Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
4562479403912495880710 ~2006
4562761499912552299910 ~2006
45628698732737721923911 ~2008
4562879099912575819910 ~2006
4563052691912610538310 ~2006
456306485919164872407912 ~2010
4563152123912630424710 ~2006
4563270839912654167910 ~2006
4563367811912673562310 ~2006
4563398579912679715910 ~2006
45636372617301819617711 ~2009
456374064729207940140912 ~2010
4563840899912768179910 ~2006
4564002623912800524710 ~2006
4564100543912820108710 ~2006
45642129773651370381711 ~2008
45643300613651464048911 ~2008
45643689713651495176911 ~2008
45644388776390214427911 ~2009
45648670394564867039111 ~2008
4564889243912977848710 ~2006
45650124794565012479111 ~2008
4565014871913002974310 ~2006
4565099243913019848710 ~2006
456523877325565337128912 ~2010
Exponent Prime Factor Digits Year
45655437113652434968911 ~2008
45656355737305016916911 ~2009
4565660171913132034310 ~2006
4565734091913146818310 ~2006
4566026963913205392710 ~2006
4566073019913214603910 ~2006
45660895332739653719911 ~2008
4566276131913255226310 ~2006
45664624212739877452711 ~2008
4566478223913295644710 ~2006
4566501851913300370310 ~2006
4566840683913368136710 ~2006
4567043963913408792710 ~2006
4567458491913491698310 ~2006
45674968732740498123911 ~2008
4567581611913516322310 ~2006
4567590431913518086310 ~2006
4567735391913547078310 ~2006
4568284079913656815910 ~2006
45683492772741009566311 ~2008
4568513039913702607910 ~2006
4568868431913773686310 ~2006
4568906291913781258310 ~2006
4569339371913867874310 ~2006
4569446603913889320710 ~2006
Exponent Prime Factor Digits Year
45694539293655563143311 ~2008
456948318721933519297712 ~2010
45696142278225305608711 ~2009
4569649391913929878310 ~2006
4569760619913952123910 ~2006
45698137613655851008911 ~2008
4570010279914002055910 ~2006
45700680918226122563911 ~2009
45701249213656099936911 ~2008
4570780079914156015910 ~2006
45708764212742525852711 ~2008
4570960703914192140710 ~2006
45710835412742650124711 ~2008
45711075532742664531911 ~2008
4571133299914226659910 ~2006
4571351003914270200710 ~2006
4571411711914282342310 ~2006
45714635213657170816911 ~2008
4571746463914349292710 ~2006
45719634412743178064711 ~2008
4572215051914443010310 ~2006
4572353111914470622310 ~2006
4572471131914494226310 ~2006
45724912518230484251911 ~2009
457253247721033649394312 ~2010
Exponent Prime Factor Digits Year
4572655751914531150310 ~2006
4572656411914531282310 ~2006
45726635212743598112711 ~2008
4572775439914555087910 ~2006
4572895031914579006310 ~2006
4572956639914591327910 ~2006
4573132703914626540710 ~2006
4573434419914686883910 ~2006
4573467443914693488710 ~2006
4573503491914700698310 ~2006
4573938359914787671910 ~2006
45739690212744381412711 ~2008
457429968718297198748112 ~2010
4574392859914878571910 ~2006
457445461713723363851112 ~2009
45745233293659618663311 ~2008
457497654726534863972712 ~2010
45750440837320070532911 ~2009
457527787111895722464712 ~2009
457533744776865669109712 ~2011
4575359231915071846310 ~2006
4575512411915102482310 ~2006
4575533591915106718310 ~2006
4575774551915154910310 ~2006
45758471393660677711311 ~2008
Home
4.933.056 digits
e-mail
25-07-20