Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
748381103322451433099112 ~2011
74838605631496772112711 ~2008
74842311711496846234311 ~2008
74847027475987762197711 ~2010
74854169031497083380711 ~2008
74854617711497092354311 ~2008
74860837791497216755911 ~2008
74862091791497241835911 ~2008
74862448191497248963911 ~2008
74865429231497308584711 ~2008
74866219791497324395911 ~2008
74866506231497330124711 ~2008
74867489031497349780711 ~2008
74871926214492315572711 ~2009
74872428111497448562311 ~2008
74877427191497548543911 ~2008
74877953511497559070311 ~2008
74881517391497630347911 ~2008
74887381614493242896711 ~2009
748897150719471325918312 ~2011
74897180391497943607911 ~2008
74907972831498159456711 ~2008
749105144337455257215112 ~2012
74913615831498272316711 ~2008
74914925214494895512711 ~2009
Exponent Prime Factor Dig. Year
74916752875993340229711 ~2010
74919967191498399343911 ~2008
74927155014495629300711 ~2009
74931032031498620640711 ~2008
74935179734496110783911 ~2009
74936526711498730534311 ~2008
749370608319483635815912 ~2011
74941497111498829942311 ~2008
74943637911498872758311 ~2008
74946645111498932902311 ~2008
74946732711498934654311 ~2008
74949404991498988099911 ~2008
74949482991498989659911 ~2008
74951248311499024966311 ~2008
74957206277495720627111 ~2010
74958724911499174498311 ~2008
74959041831499180836711 ~2008
74960957515996876600911 ~2010
74962614711499252294311 ~2008
749723141955479512500712 ~2012
74977403031499548060711 ~2008
74981016231499620324711 ~2008
74984985317498498531111 ~2010
74985852711499717054311 ~2008
74990347431499806948711 ~2008
Exponent Prime Factor Dig. Year
74991446511499828930311 ~2008
74991740995999339279311 ~2010
74993196831499863936711 ~2008
74998677591499973551911 ~2008
75001127991500022559911 ~2008
75003086631500061732711 ~2008
75003242814500194568711 ~2009
75003802134500228127911 ~2009
75005662311500113246311 ~2008
75006340191500126803911 ~2008
75007537911500150758311 ~2008
75007837431500156748711 ~2008
75008990511500179810311 ~2008
75009590174500575410311 ~2009
75011024031500220480711 ~2008
75014871831500297436711 ~2008
75015255231500305104711 ~2008
750155238112002483809712 ~2010
75015662031500313240711 ~2008
75020524431500410488711 ~2008
75021593631500431872711 ~2008
75024692031500493840711 ~2008
75025151774501509106311 ~2009
75029140911500582818311 ~2008
75030951231500619024711 ~2008
Exponent Prime Factor Dig. Year
75032704311500654086311 ~2008
75033532676002682613711 ~2010
75035575911500711518311 ~2008
75038581431500771628711 ~2008
75040543311500810866311 ~2008
750406542712006504683312 ~2010
75040836231500816724711 ~2008
75044860791500897215911 ~2008
75048026816003842144911 ~2010
75053632911501072658311 ~2008
75054113631501082272711 ~2008
75055646391501112927911 ~2008
75056212934503372775911 ~2009
75063937311501278746311 ~2008
75065960631501319212711 ~2008
75067527831501350556711 ~2008
75069592311501391846311 ~2008
75074006477507400647111 ~2010
75081217934504873075911 ~2009
75083631116006690488911 ~2010
75084194031501683880711 ~2008
75084837111501696742311 ~2008
75086288991501725779911 ~2008
75087080934505224855911 ~2009
75093896031501877920711 ~2008
Home
4.724.182 digits
e-mail
25-04-13