Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
62185867191243717343911 ~2007
62186977614974958208911 ~2009
62189239791243784795911 ~2007
62190030231243800604711 ~2007
62190131031243802620711 ~2007
62193272391243865447911 ~2007
62194064991243881299911 ~2007
62196238314975699064911 ~2009
62196248991243924979911 ~2007
62198092431243961848711 ~2007
62203885791244077715911 ~2007
62205429591244108591911 ~2007
62208966316220896631111 ~2009
62209956733732597403911 ~2009
62211336413732680184711 ~2009
62211398236221139823111 ~2009
622119940716175118458312 ~2010
62215553631244311072711 ~2007
62218343476221834347111 ~2009
622217265124888690604112 ~2011
62224972191244499443911 ~2007
62228212639956514020911 ~2010
62233226391244664527911 ~2007
62235653991244713079911 ~2007
62239434773734366086311 ~2009
Exponent Prime Factor Dig. Year
622394849911203107298312 ~2010
62240433591244808671911 ~2007
62240532796224053279111 ~2009
62240930413734455824711 ~2009
62240987391244819747911 ~2007
62242615791244852315911 ~2007
62255534031245110680711 ~2007
62255706013735342360711 ~2009
62256073311245121466311 ~2007
62256931911245138638311 ~2007
62257439213735446352711 ~2009
62258980431245179608711 ~2007
62260900516226090051111 ~2009
62262820036226282003111 ~2009
62264638519962342161711 ~2010
62272580391245451607911 ~2007
62273093773736385626311 ~2009
62274804594981984367311 ~2009
62276306391245526127911 ~2007
62278041711245560834311 ~2007
62278376991245567539911 ~2007
62285406111245708122311 ~2007
62289139133737348347911 ~2009
62289505311245790106311 ~2007
62290589031245811780711 ~2007
Exponent Prime Factor Dig. Year
62294031133737641867911 ~2009
62298249831245964996711 ~2007
62298336111245966722311 ~2007
62298443991245968879911 ~2007
623004238711214076296712 ~2010
62301859431246037188711 ~2007
62302259991246045199911 ~2007
62303103973738186238311 ~2009
62305308111246106162311 ~2007
62306961831246139236711 ~2007
62307768591246155371911 ~2007
62311401711246228034311 ~2007
62315755431246315108711 ~2007
62320131711246402634311 ~2007
62320738191246414763911 ~2007
62323264213739395852711 ~2009
62323964938725355090311 ~2010
62327666213739659972711 ~2009
62328604791246572095911 ~2007
62328685911246573718311 ~2007
62334668031246693360711 ~2007
62336854813740211288711 ~2009
62337570591246751411911 ~2007
62338713414987097072911 ~2009
623390697124935627884112 ~2011
Exponent Prime Factor Dig. Year
623398066123689126511912 ~2011
62342015573740520934311 ~2009
62344181031246883620711 ~2007
62349305874987944469711 ~2009
62351999814988159984911 ~2009
62352367191247047343911 ~2007
62353757991247075159911 ~2007
62360769114988861528911 ~2009
62363160133741789607911 ~2009
62363868831247277376711 ~2007
62367225196236722519111 ~2009
62368112991247362259911 ~2007
62368428831247368576711 ~2007
62371369431247427388711 ~2008
62372113911247442278311 ~2008
623722251724948890068112 ~2011
62376932573742615954311 ~2009
62377349631247546992711 ~2008
623776838919960858844912 ~2010
62378525391247570507911 ~2008
62378728573742723714311 ~2009
62379108831247582176711 ~2008
62379422476237942247111 ~2009
62379937911247598758311 ~2008
62381664111247633282311 ~2008
Home
4.828.532 digits
e-mail
25-06-01