Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
64985610711299712214311 ~2008
64986588111299731762311 ~2008
64988554311299771086311 ~2008
64990546311299810926311 ~2008
64994858031299897160711 ~2008
64994966511299899330311 ~2008
64995293391299905867911 ~2008
64997329191299946583911 ~2008
64998605813899916348711 ~2009
65001947511300038950311 ~2008
65003838591300076771911 ~2008
650065735719501972071112 ~2011
65008174191300163483911 ~2008
65010060591300201211911 ~2008
65010406613900624396711 ~2009
650126158310402018532912 ~2010
65013858831300277176711 ~2008
650176309127307404982312 ~2011
65019727911300394558311 ~2008
65023382991300467659911 ~2008
65024428191300488563911 ~2008
65024618631300492372711 ~2008
65026751991300535039911 ~2008
65031491511300629830311 ~2008
65035111911300702238311 ~2008
Exponent Prime Factor Dig. Year
65039545333902372719911 ~2009
65043102591300862051911 ~2008
65044782831300895656711 ~2008
65045135031300902700711 ~2008
65045814591300916291911 ~2008
65046072831300921456711 ~2008
65048078391300961567911 ~2008
65051274111301025482311 ~2008
65053665591301073311911 ~2008
65054865831301097316711 ~2008
65055315231301106304711 ~2008
65055534973903332098311 ~2009
65055912831301118256711 ~2008
65055948831301118976711 ~2008
65056323595204505887311 ~2009
65056789791301135795911 ~2008
65058694311301173886311 ~2008
65068737711301374754311 ~2008
65071447791301428955911 ~2008
65072327173904339630311 ~2009
65076802191301536043911 ~2008
65078200915206256072911 ~2009
65082188631301643772711 ~2008
65082265133904935907911 ~2009
65082299391301645987911 ~2008
Exponent Prime Factor Dig. Year
65083145631301662912711 ~2008
65084848311301696966311 ~2008
65086420795206913663311 ~2009
650881301911715863434312 ~2010
65088253911301765078311 ~2008
65088911391301778227911 ~2008
65098610031301972200711 ~2008
65102066631302041332711 ~2008
651030138710416482219312 ~2010
65105247111302104942311 ~2008
65109311391302186227911 ~2008
65109601191302192023911 ~2008
65113294791302265895911 ~2008
65113997095209119767311 ~2009
65115987831302319756711 ~2008
65116055631302321112711 ~2008
651175278131256413348912 ~2011
65118244996511824499111 ~2009
65122125413907327524711 ~2009
65122558311302451166311 ~2008
65122967991302459359911 ~2008
65123812311302476246311 ~2008
65126991115210159288911 ~2009
65127965991302559319911 ~2008
65134562631302691252711 ~2008
Exponent Prime Factor Dig. Year
65134652391302693047911 ~2008
65135174031302703480711 ~2008
65137790031302755800711 ~2008
651403166935175771012712 ~2011
65141735533908504131911 ~2009
65146277995211702239311 ~2009
65151661911303033238311 ~2008
65153685711303073714311 ~2008
65159421711303188434311 ~2008
65160192831303203856711 ~2008
65162743979122784155911 ~2010
65166870591303337411911 ~2008
65177069573910624174311 ~2009
65181900831303638016711 ~2008
65191934631303838692711 ~2008
65195185573911711134311 ~2009
65208819591304176391911 ~2008
65209065475216725237711 ~2009
65213342933912800575911 ~2009
65217404991304348099911 ~2008
65218418031304368360711 ~2008
65221189791304423795911 ~2008
65221988275217759061711 ~2009
65222694711304453894311 ~2008
65223867711304477354311 ~2008
Home
4.858.378 digits
e-mail
25-06-15