Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
92228928591844578571911 ~2009
92229601191844592023911 ~2009
92236905231844738104711 ~2009
92238008997379040719311 ~2010
92239934511844798690311 ~2009
92242158231844843164711 ~2009
92248533111844970662311 ~2009
92252186719225218671111 ~2011
92252347431845046948711 ~2009
92253170991845063419911 ~2009
92255319231845106384711 ~2009
92257939431845158788711 ~2009
92260705735535642343911 ~2010
92267311911845346238311 ~2009
922703612922144886709712 ~2011
92280863031845617260711 ~2009
92280874335536852459911 ~2010
92284786815537087208711 ~2010
92290559631845811192711 ~2009
92291029791845820595911 ~2009
92294454711845889094311 ~2009
92294742297383579383311 ~2010
92299664775537979886311 ~2010
923095465116615718371912 ~2011
92319058335539143499911 ~2010
Exponent Prime Factor Dig. Year
92320070511846401410311 ~2009
92327204391846544087911 ~2009
92331147111846622942311 ~2009
92333185617386654848911 ~2010
92334110175540046610311 ~2010
92339881935540392915911 ~2010
92343047631846860952711 ~2009
92346850791846937015911 ~2009
92347719015540863140711 ~2010
92348173015540890380711 ~2010
92354647791847092955911 ~2009
92357756217388620496911 ~2010
92358647631847172952711 ~2009
92359929711847198594311 ~2009
92365950735541957043911 ~2010
92366074311847321486311 ~2009
92372628831847452576711 ~2009
92378565615542713936711 ~2010
92383000911847660018311 ~2009
92384037777390723021711 ~2010
923850444722172410672912 ~2011
92388806815543328408711 ~2010
92391089511847821790311 ~2009
92391948591847838971911 ~2009
92392448631847848972711 ~2009
Exponent Prime Factor Dig. Year
92397291831847945836711 ~2009
92400188031848003760711 ~2009
924009657722176231784912 ~2011
92401102791848022055911 ~2009
92402955111848059102311 ~2009
92403324111848066482311 ~2009
92406455031848129100711 ~2009
92422510431848450208711 ~2009
92423322079242332207111 ~2011
92428354017394268320911 ~2010
92436054111848721082311 ~2009
92437373391848747467911 ~2009
92438330575546299834311 ~2010
92439842031848796840711 ~2009
92442071391848841427911 ~2009
92443833591848876671911 ~2009
92444083911848881678311 ~2009
924474792142525840436712 ~2012
92448783231848975664711 ~2009
92449912191848998243911 ~2009
92450697831849013956711 ~2009
92453196231849063924711 ~2009
92454783231849095664711 ~2009
92455905591849118111911 ~2009
92464784631849295692711 ~2009
Exponent Prime Factor Dig. Year
92469276711849385534311 ~2009
92470421631849408432711 ~2009
92472787917397823032911 ~2010
92481118911849622378311 ~2009
92483171391849663427911 ~2009
92487127431849742548711 ~2009
92488960431849779208711 ~2009
92490475191849809503911 ~2009
92498202711849964054311 ~2009
92515418631850308372711 ~2009
92517029631850340592711 ~2009
92519964175551197850311 ~2010
92523363711850467274311 ~2009
92526469791850529395911 ~2009
92533442031850668840711 ~2009
92539283175552356990311 ~2010
92541235791850824715911 ~2009
925447523322210740559312 ~2011
92547745191850954903911 ~2009
92548344897403867591311 ~2010
92548711377403896909711 ~2010
92550158511851003170311 ~2009
92551099911851021998311 ~2009
92554415991851088319911 ~2009
92558418535553505111911 ~2010
Home
4.724.182 digits
e-mail
25-04-13