Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
93809799831876195996711 ~2009
93811003575628660214311 ~2010
93811712031876234240711 ~2009
93813406791876268135911 ~2009
93818308311876366166311 ~2009
93821086431876421728711 ~2009
93822204111876444082311 ~2009
93822215391876444307911 ~2009
93824474991876489499911 ~2009
938245184324394374791912 ~2012
93824676831876493536711 ~2009
93826247631876524952711 ~2009
93828066597506245327311 ~2010
93834895135630093707911 ~2010
938397623313137566726312 ~2011
93845926215630755572711 ~2010
93848318031876966360711 ~2009
93849943191876998863911 ~2009
93850818591877016371911 ~2009
93854414511877088290311 ~2009
93856103031877122060711 ~2009
93857976231877159524711 ~2009
93858439191877168783911 ~2009
93861488991877229779911 ~2009
93862355391877247107911 ~2009
Exponent Prime Factor Dig. Year
93867091335632025479911 ~2010
93867463311877349266311 ~2009
93870008391877400167911 ~2009
93870288231877405764711 ~2009
938717172722529212144912 ~2012
93876027711877520554311 ~2009
93876668335632600099911 ~2010
93876734997510138799311 ~2010
93884247111877684942311 ~2009
93884253111877685062311 ~2009
93890202415633412144711 ~2010
93895021191877900423911 ~2009
93895927911877918558311 ~2009
93898193575633891614311 ~2010
93899639631877992792711 ~2009
93903444711878068894311 ~2009
939048807161977221268712 ~2013
939126540745078073953712 ~2012
93916018375634961102311 ~2010
939255487922542131709712 ~2012
93933195711878663914311 ~2009
93935170791878703415911 ~2009
93940992231878819844711 ~2009
93943813617515505088911 ~2010
939446131337577845252112 ~2012
Exponent Prime Factor Dig. Year
93950096391879001927911 ~2009
93950214831879004296711 ~2009
93950764791879015295911 ~2009
93952033791879040675911 ~2009
93954334311879086686311 ~2009
939601202324429631259912 ~2012
93960811735637648703911 ~2010
93961135911879222718311 ~2009
93962871711879257434311 ~2009
93963658791879273175911 ~2009
939644419916913599558312 ~2011
93965127711879302554311 ~2009
93966217911879324358311 ~2009
93970894791879417895911 ~2009
93977191135638631467911 ~2010
93979536831879590736711 ~2009
93979773111879595462311 ~2009
93986063511879721270311 ~2009
93991119375639467162311 ~2010
93993379911879867598311 ~2009
93995519391879910387911 ~2009
939973395715039574331312 ~2011
94000533199400053319111 ~2011
94001388231880027764711 ~2009
94005716391880114327911 ~2009
Exponent Prime Factor Dig. Year
94005874335640352459911 ~2010
940075531713161057443912 ~2011
94017465591880349311911 ~2009
94026750711880535014311 ~2009
94030690311880613806311 ~2009
94040670735642440243911 ~2010
94048373991880967479911 ~2009
94053018831881060376711 ~2009
94054255311881085106311 ~2009
94068434031881368680711 ~2009
94071583935644295035911 ~2010
94073771391881475427911 ~2009
94077639711881552794311 ~2009
94078034031881560680711 ~2009
94078584591881571691911 ~2009
94086419535645185171911 ~2010
94088156839408815683111 ~2011
94088602311881772046311 ~2009
94089263217527141056911 ~2010
94094603031881892060711 ~2009
940988089916937785618312 ~2011
94098964879409896487111 ~2011
94099637631881992752711 ~2009
94101168735646070123911 ~2010
94102817997528225439311 ~2010
Home
4.724.182 digits
e-mail
25-04-13