Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
97790116911955802338311 ~2009
97790559591955811191911 ~2009
97795194111955903882311 ~2009
97799450991955989019911 ~2009
97801025391956020507911 ~2009
97804846431956096928711 ~2009
97810015639781001563111 ~2011
97815612591956312251911 ~2009
97826406831956528136711 ~2009
97836226797826898143311 ~2011
97837449417826995952911 ~2011
97838526231956770524711 ~2009
97838634231956772684711 ~2009
97842800031956856000711 ~2009
97843546911956870938311 ~2009
978465958137181706407912 ~2012
97849491711956989834311 ~2009
978508726923484209445712 ~2012
97860802677828864213711 ~2011
97861283511957225670311 ~2009
97862009391957240187911 ~2009
97865340711957306814311 ~2009
97867924191957358483911 ~2009
97882543791957650875911 ~2009
97885740775873144446311 ~2010
Exponent Prime Factor Dig. Year
97891952335873517139911 ~2010
97895573397831645871311 ~2011
97902958917832236712911 ~2011
97903804191958076083911 ~2009
97906617615874397056711 ~2010
97909981311958199626311 ~2009
97911204831958224096711 ~2009
97930004031958600080711 ~2009
979301209329379036279112 ~2012
97930179591958603591911 ~2009
97931852877834548229711 ~2011
97934188519793418851111 ~2011
97935544735876132683911 ~2010
97935655431958713108711 ~2009
97940068791958801375911 ~2009
979406095713711685339912 ~2011
979411247313711757462312 ~2011
97943376015876602560711 ~2010
97946823775876809426311 ~2010
97948949511958978990311 ~2009
97951797591959035951911 ~2009
97951963815877117828711 ~2010
97953363711959067274311 ~2009
97957707231959154144711 ~2009
97959678735877580723911 ~2010
Exponent Prime Factor Dig. Year
97961084631959221692711 ~2009
97961516991959230339911 ~2009
979626169713714766375912 ~2011
97964787591959295751911 ~2009
97966222575877973354311 ~2010
97966541511959330830311 ~2009
97969692231959393844711 ~2009
97982585391959651707911 ~2009
97985066031959701320711 ~2009
97988311311959766226311 ~2009
97990370511959807410311 ~2009
97993245111959864902311 ~2009
97998809031959976180711 ~2009
98000141535880008491911 ~2010
98001350991960027019911 ~2009
98004746991960094939911 ~2009
98006569911960131398311 ~2009
98006612391960132247911 ~2009
98011893297840951463311 ~2011
98014012311960280246311 ~2009
98015296311960305926311 ~2009
98023810791960476215911 ~2009
98024337831960486756711 ~2009
98024628231960492564711 ~2009
98026186497842094919311 ~2011
Exponent Prime Factor Dig. Year
98030987511960619750311 ~2009
98035564911960711298311 ~2009
98040051711960801034311 ~2009
98040251511960805030311 ~2009
98041968231960839364711 ~2009
98053965711961079314311 ~2009
98055722991961114459911 ~2009
98058841911961176838311 ~2009
98064030591961280611911 ~2009
98068263111961365262311 ~2009
98069796319806979631111 ~2011
98070643917845651512911 ~2011
98070739311961414786311 ~2009
98071588431961431768711 ~2009
98075296015884517760711 ~2010
98075819991961516399911 ~2009
98079112797846329023311 ~2011
980810748115692971969712 ~2011
98082647775884958866311 ~2010
98085276231961705524711 ~2009
98086488231961729764711 ~2009
98097417831961948356711 ~2009
98101102311962022046311 ~2009
98103888535886233311911 ~2010
98109406191962188123911 ~2009
Home
4.724.182 digits
e-mail
25-04-13