Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
98410061575904603694311 ~2010
98410082391968201647911 ~2009
98411202535904672151911 ~2010
98415004911968300098311 ~2009
98415914775904954886311 ~2010
984204616333462956954312 ~2012
984278805115748460881712 ~2011
98437400511968748010311 ~2009
98438301591968766031911 ~2009
98446113231968922264711 ~2009
98452232991969044659911 ~2009
98454027111969080542311 ~2009
98461535031969230700711 ~2009
98465310111969306202311 ~2009
98467599711969351994311 ~2009
98470160277877612821711 ~2011
98470472335908228339911 ~2010
98471096415908265784711 ~2010
98477537535908652251911 ~2010
98478165231969563304711 ~2009
98484843231969696864711 ~2009
98485497591969709951911 ~2009
98486454831969729096711 ~2009
98488465197879077215311 ~2011
98490536479849053647111 ~2011
Exponent Prime Factor Dig. Year
98495533911969910678311 ~2009
98497952391969959047911 ~2009
98499204711969984094311 ~2009
984999836913789997716712 ~2011
98501972511970039450311 ~2009
98505493911970109878311 ~2009
98511804111970236082311 ~2009
98516021991970320439911 ~2009
98518521415911111284711 ~2010
98520047697881603815311 ~2011
98522366575911341994311 ~2010
98525106375911506382311 ~2010
98528958231970579164711 ~2009
98529266511970585330311 ~2009
98529931311970598626311 ~2009
98537324031970746480711 ~2009
98537413431970748268711 ~2009
98544292935912657575911 ~2010
98547561231970951224711 ~2009
98547723597883817887311 ~2011
98550749511971014990311 ~2009
98564251677885140133711 ~2011
98564353311971287066311 ~2009
98568005991971360119911 ~2009
985690177713799662487912 ~2011
Exponent Prime Factor Dig. Year
98573134191971462683911 ~2009
98575479231971509584711 ~2009
98579680191971593603911 ~2009
98587858375915271502311 ~2010
98587966791971759335911 ~2009
98591461977887316957711 ~2011
98591692911971833858311 ~2009
98593534335915612059911 ~2010
98597183599859718359111 ~2011
98597548335915852899911 ~2010
98598555135915913307911 ~2010
985998809313803983330312 ~2011
98602780791972055615911 ~2009
986045898139441835924112 ~2012
98605179231972103584711 ~2009
98608555797888684463311 ~2011
986110415970999949944912 ~2013
98621433591972428671911 ~2009
98631227391972624547911 ~2009
98632819311972656386311 ~2009
986381152131564196867312 ~2012
98642085831972841716711 ~2009
98643441111972868822311 ~2009
98647598517891807880911 ~2011
98648148711972962974311 ~2009
Exponent Prime Factor Dig. Year
98652966591973059331911 ~2009
98655184191973103683911 ~2009
98658932097892714567311 ~2011
98661396591973227931911 ~2009
98668846791973376935911 ~2009
98672868175920372090311 ~2010
98675112111973502242311 ~2009
98677123917894169912911 ~2011
98682183831973643676711 ~2009
98684175015921050500711 ~2010
98685605631973712112711 ~2009
98690797431973815948711 ~2009
98691532791973830655911 ~2009
98695567311973911346311 ~2009
98697919791973958395911 ~2009
98703418431974068368711 ~2009
98704608231974092164711 ~2009
98711758191974235163911 ~2009
98712621831974252436711 ~2009
987127848121716812658312 ~2012
98713204431974264088711 ~2009
98724494031974489880711 ~2009
98724983511974499670311 ~2009
98726371191974527423911 ~2009
98730099535923805971911 ~2010
Home
4.724.182 digits
e-mail
25-04-13