Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
112059440632241188812711 ~2009
112070324392241406487911 ~2009
112073848432241476968711 ~2009
1120747489715690464855912 ~2012
112076783512241535670311 ~2009
112079139112241582782311 ~2009
112082224576724933474311 ~2011
112083214312241664286311 ~2009
112103980192242079603911 ~2009
112106297992242125959911 ~2009
112106465632242129312711 ~2009
112107454312242149086311 ~2009
112111681912242233638311 ~2009
112112254376726735262311 ~2011
112113947392242278947911 ~2009
112114737832242294756711 ~2009
112116848392242336967911 ~2009
112117042792242340855911 ~2009
112117080176727024810311 ~2011
112126381976727582918311 ~2011
112130749136727844947911 ~2011
112131366736727882003911 ~2011
112132946992242658939911 ~2009
112143330232242866604711 ~2009
112144758592242895171911 ~2009
Exponent Prime Factor Dig. Year
112145485378971638829711 ~2011
112149019912242980398311 ~2009
112169474576730168474311 ~2011
1121718676311217186763112 ~2011
112180036312243600726311 ~2009
112181364592243627291911 ~2009
112184584792243691695911 ~2009
112193797333336...32594314 2025
112198202992243964059911 ~2009
112199133112243982662311 ~2009
112201810192244036203911 ~2009
112202780816732166848711 ~2011
112211020312244220406311 ~2009
112211480512244229610311 ~2009
112212121432244242428711 ~2009
112213105432244262108711 ~2009
112216228312244324566311 ~2009
112216316992244326339911 ~2009
112216620592244332411911 ~2009
112216833536733010011911 ~2011
112222951912244459038311 ~2009
112227549536733652971911 ~2011
1122284059715711976835912 ~2012
112232205778978576461711 ~2011
112233431512244668630311 ~2009
Exponent Prime Factor Dig. Year
112235965216734157912711 ~2011
112240817632244816352711 ~2009
1122492120711224921207112 ~2011
112252607512245052150311 ~2009
112258719112245174382311 ~2009
112259505232245190104711 ~2009
112262789936735767395911 ~2011
112265019712245300394311 ~2009
112265479912245309598311 ~2009
112275604192245512083911 ~2009
112277096512245541930311 ~2009
1122983958117967743329712 ~2012
112301069632246021392711 ~2009
112302324176738139450311 ~2011
112304151592246083031911 ~2009
112315696312246313926311 ~2009
1123178768915724502764712 ~2012
112324841992246496839911 ~2009
112328307832246566156711 ~2009
112329544432246590888711 ~2009
112330992112246619842311 ~2009
112331892832246637856711 ~2009
112337153998986972319311 ~2011
1123442297315728192162312 ~2012
112344551392246891027911 ~2009
Exponent Prime Factor Dig. Year
112349580712246991614311 ~2009
112351167416741070044711 ~2011
112351508632247030172711 ~2009
112353136136741188167911 ~2011
112353962992247079259911 ~2009
112358224432247164488711 ~2009
112360043032247200860711 ~2009
112363045432247260908711 ~2009
112363130512247262610311 ~2009
112368307432247366148711 ~2009
112380924232247618484711 ~2009
112381954432247639088711 ~2009
112387607518991008600911 ~2011
112390722136743443327911 ~2011
1123921906726974125760912 ~2012
1123928334717982853355312 ~2012
112393822792247876455911 ~2009
112396825432247936508711 ~2009
112397556712247951134311 ~2009
112406163016744369780711 ~2011
1124079306124729744734312 ~2012
112408644712248172894311 ~2009
112412913112248258262311 ~2009
112422530632248450612711 ~2009
112425138536745508311911 ~2011
Home
4.724.182 digits
e-mail
25-04-13