Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
88720635591774412711911 ~2009
88723031511774460630311 ~2009
88724474031774489480711 ~2009
88725132975323507978311 ~2010
887258388721294201328912 ~2011
88733981511774679630311 ~2009
88737718911774754378311 ~2009
88739563791774791275911 ~2009
887405526126622165783112 ~2012
88741953831774839076711 ~2009
88742370591774847411911 ~2009
88743326517099466120911 ~2010
88747615917099809272911 ~2010
88750121991775002439911 ~2009
88753792911775075858311 ~2009
88754443935325266635911 ~2010
88759562031775191240711 ~2009
887661163712427256291912 ~2011
88767833391775356667911 ~2009
88780559511775611190311 ~2009
88781963631775639272711 ~2009
88783110678878311067111 ~2010
88783354911775667098311 ~2009
88785046191775700923911 ~2009
88786320111775726402311 ~2009
Exponent Prime Factor Dig. Year
88791281031775825620711 ~2009
88793634591775872691911 ~2009
88793961591775879231911 ~2009
887976496715983576940712 ~2011
88801208631776024172711 ~2009
888038479712432538715912 ~2011
888045502715984819048712 ~2011
88806086238880608623111 ~2010
88806445791776128915911 ~2009
88807412631776148252711 ~2009
88816996791776339935911 ~2009
88820232117105618568911 ~2010
88822863231776457264711 ~2009
88823608431776472168711 ~2009
88828723911776574478311 ~2009
888298001321319152031312 ~2011
888301359769287506056712 ~2013
88837870375330272222311 ~2010
88838125431776762508711 ~2009
88842743631776854872711 ~2009
88844235111776884702311 ~2009
88844524197107561935311 ~2010
88846744431776934888711 ~2009
888473191712438624683912 ~2011
88850825991777016519911 ~2009
Exponent Prime Factor Dig. Year
88852286031777045720711 ~2009
888569833712439977671912 ~2011
88857088791777141775911 ~2009
888571571921325717725712 ~2011
888571595312440002334312 ~2011
88864163535331849811911 ~2010
88866345111777326902311 ~2009
88868397375332103842311 ~2010
88870460877109636869711 ~2010
88870707111777414142311 ~2009
888719244140881085228712 ~2012
88874707197109976575311 ~2010
888750637137327526758312 ~2012
88878107031777562140711 ~2009
88879041591777580831911 ~2009
888809983712443339771912 ~2011
88885015791777700315911 ~2009
88885039977110803197711 ~2010
88885342615333120556711 ~2010
88892475111777849502311 ~2009
88894205631777884112711 ~2009
88896753231777935064711 ~2009
88899067197111925375311 ~2010
889053775712446752859912 ~2011
88911494598891149459111 ~2010
Exponent Prime Factor Dig. Year
88916798511778335970311 ~2009
88923185511778463710311 ~2009
88924189191778483783911 ~2009
88926977991778539559911 ~2009
88931802775335908166311 ~2010
88941519015336491140711 ~2010
88943585817115486864911 ~2010
88944206031778884120711 ~2009
889449811314231196980912 ~2011
88950877311779017546311 ~2009
88954669911779093398311 ~2009
88954762375337285742311 ~2010
88955169111779103382311 ~2009
88956264711779125294311 ~2009
889676266314234820260912 ~2011
88967892117117431368911 ~2010
88968463911779369278311 ~2009
88969719591779394391911 ~2009
88970254791779405095911 ~2009
889720589312456088250312 ~2011
88982868231779657364711 ~2009
88982986911779659738311 ~2009
88986835335339210119911 ~2010
88990418631779808372711 ~2009
88990461597119236927311 ~2010
Home
4.828.532 digits
e-mail
25-06-01