Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
92017437735521046263911 ~2010
92018191975521091518311 ~2010
92018498031840369960711 ~2009
92026287231840525744711 ~2009
92029634391840592687911 ~2009
92030884077362470725711 ~2010
920314978922087559493712 ~2011
92036956615522217396711 ~2010
92041622631840832452711 ~2009
92044638711840892774311 ~2009
92047939431840958788711 ~2009
92051412777364113021711 ~2010
92052466191841049323911 ~2009
92054908077364392645711 ~2010
92068319511841366390311 ~2009
92068646511841372930311 ~2009
92069685417365574832911 ~2010
92073887535524433251911 ~2010
92083919031841678380711 ~2009
92088660711841773214311 ~2009
92089969911841799398311 ~2009
92092966431841859328711 ~2009
92101108311842022166311 ~2009
92106357711842127154311 ~2009
92106685311842133706311 ~2009
Exponent Prime Factor Dig. Year
92107512711842150254311 ~2009
92111823177368945853711 ~2010
92113789377369103149711 ~2010
92113825197369106015311 ~2010
92116148031842322960711 ~2009
92117734791842354695911 ~2009
92129239975527754398311 ~2010
92140858191842817163911 ~2009
921420484127642614523112 ~2012
92142695631842853912711 ~2009
92146270431842925408711 ~2009
92148028191842960563911 ~2009
92150278311843005566311 ~2009
92150761911843015238311 ~2009
92150768031843015360711 ~2009
92157437391843148747911 ~2009
92158176831843163536711 ~2009
92158365591843167311911 ~2009
921583771366354031533712 ~2013
92160304431843206088711 ~2009
92163017775529781066311 ~2010
92165089575529905374311 ~2010
92165500191843310003911 ~2009
92165619831843312396711 ~2009
92170879911843417598311 ~2009
Exponent Prime Factor Dig. Year
92176098831843521976711 ~2009
92176345791843526915911 ~2009
92178034431843560688711 ~2009
92185826031843716520711 ~2009
92188577511843771550311 ~2009
921889836164532288527112 ~2013
921896183938719639723912 ~2012
92190373431843807468711 ~2009
92190823575531449414311 ~2010
92195777935531746675911 ~2010
92204405631844088112711 ~2009
92212661391844253227911 ~2009
92213006391844260127911 ~2009
922158505712910219079912 ~2011
92220049311844400986311 ~2009
92222775231844455504711 ~2009
92223085735533385143911 ~2010
92224373397377949871311 ~2010
92228928591844578571911 ~2009
92229601191844592023911 ~2009
92236905231844738104711 ~2009
92237615775534256946311 ~2010
92238008997379040719311 ~2010
92239934511844798690311 ~2009
92242158231844843164711 ~2009
Exponent Prime Factor Dig. Year
92248533111844970662311 ~2009
92252186719225218671111 ~2011
92252347431845046948711 ~2009
92253170991845063419911 ~2009
92255319231845106384711 ~2009
92257939431845158788711 ~2009
92260705735535642343911 ~2010
92267311911845346238311 ~2009
922703612922144886709712 ~2011
92280863031845617260711 ~2009
92280874335536852459911 ~2010
92284786815537087208711 ~2010
92290559631845811192711 ~2009
92291029791845820595911 ~2009
92294454711845889094311 ~2009
92294742297383579383311 ~2010
92299664775537979886311 ~2010
923095465116615718371912 ~2011
92319058335539143499911 ~2010
92320070511846401410311 ~2009
92327204391846544087911 ~2009
92331147111846622942311 ~2009
92333185617386654848911 ~2010
92334110175540046610311 ~2010
92339881935540392915911 ~2010
Home
4.828.532 digits
e-mail
25-06-01