Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
97437391519743739151111 ~2011
974378474923385083397712 ~2012
97440903711948818074311 ~2009
97442992677795439413711 ~2010
97451236911949024738311 ~2009
97452110391949042207911 ~2009
97455098631949101972711 ~2009
97457022231949140444711 ~2009
97458073911949161478311 ~2009
97466437639746643763111 ~2011
97474906191949498123911 ~2009
97481228991949624579911 ~2009
97489071231949781424711 ~2009
97491305575849478334311 ~2010
97494051111949881022311 ~2009
97494704775849682286311 ~2010
97495481631949909632711 ~2009
97504837311950096746311 ~2009
97514676111950293522311 ~2009
97519242231950384844711 ~2009
97521063591950421271911 ~2009
97521129831950422596711 ~2009
97525638111950512762311 ~2009
97529516511950590330311 ~2009
97533747231950674944711 ~2009
Exponent Prime Factor Dig. Year
97533866631950677332711 ~2009
97536566511950731330311 ~2009
97538116311950762326311 ~2009
97540609191950812183911 ~2009
97545004017803600320911 ~2010
97548828831950976576711 ~2009
97548918231950978364711 ~2009
975498025315607968404912 ~2011
97551753591951035071911 ~2009
97552008111951040162311 ~2009
97556627511951132550311 ~2009
97563235197805058815311 ~2010
97563365991951267319911 ~2009
975641428929269242867112 ~2012
97566141111951322822311 ~2009
97569512775854170766311 ~2010
975714892315611438276912 ~2011
97572574791951451495911 ~2009
97574043231951480864711 ~2009
975779900325370277407912 ~2012
97578067311951561346311 ~2009
97578372831951567456711 ~2009
97580558031951611160711 ~2009
97582333431951646668711 ~2009
97585057191951701143911 ~2009
Exponent Prime Factor Dig. Year
97592689191951853783911 ~2009
97592889711951857794311 ~2009
97594658511951893170311 ~2009
97597329591951946591911 ~2009
97600180015856010800711 ~2010
97600531677808042533711 ~2010
97603697991952073959911 ~2009
97603921135856235267911 ~2010
97608404031952168080711 ~2009
976128106315618049700912 ~2011
97612846791952256935911 ~2009
97622688711952453774311 ~2009
97625927535857555651911 ~2010
97629863391952597267911 ~2009
97633617111952672342311 ~2009
97636923535858215411911 ~2010
976380855723433140536912 ~2012
97640818135858449087911 ~2010
97650540111953010802311 ~2009
976523955723436574936912 ~2012
97659116511953182330311 ~2009
97663686591953273731911 ~2009
97669727031953394540711 ~2009
97670206879767020687111 ~2011
97671043935860262635911 ~2010
Exponent Prime Factor Dig. Year
97671324775860279486311 ~2010
97676420391953528407911 ~2009
97684639311953692786311 ~2009
976865164723444763952912 ~2012
97689025191953780503911 ~2009
97690726191953814523911 ~2009
97697857191953957143911 ~2009
97699248231953984964711 ~2009
97701278215862076692711 ~2010
97701526431954030528711 ~2009
97704594831954091896711 ~2009
97710033111954200662311 ~2009
97721726391954434527911 ~2009
97725484311954509686311 ~2009
97729376511954587530311 ~2009
97732999375863979962311 ~2010
97733483631954669672711 ~2009
97738042911954760858311 ~2009
97744450975864667058311 ~2010
97754017191955080343911 ~2009
97754635311955092706311 ~2009
97756944975865416698311 ~2010
97759506831955190136711 ~2009
97766865711955337314311 ~2009
97767824511955356490311 ~2009
Home
4.828.532 digits
e-mail
25-06-01