Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
100818214432016364288711 ~2009
100820690518065655240911 ~2011
100821208016049272480711 ~2010
100822926832016458536711 ~2009
100824280432016485608711 ~2009
100833775192016675503911 ~2009
100837458536050247511911 ~2010
100841406592016828131911 ~2009
100843283632016865672711 ~2009
100850683792017013675911 ~2009
100861402792017228055911 ~2009
1008662737918155929282312 ~2011
100866724192017334483911 ~2009
100868325832017366516711 ~2009
1008706375910087063759112 ~2011
100871988112017439762311 ~2009
100872715816052362948711 ~2010
100875772432017515448711 ~2009
100877148536052628911911 ~2010
100884962416053097744711 ~2010
100890784312017815686311 ~2009
100891372912017827458311 ~2009
100893626392017872527911 ~2009
100894454032017889080711 ~2009
1008947869126232644596712 ~2012
Exponent Prime Factor Dig. Year
100895473376053728402311 ~2010
1008960799156501804749712 ~2013
100900077232018001544711 ~2009
100903148518072251880911 ~2011
100908897298072711783311 ~2011
100909703392018194067911 ~2009
100910236192018204723911 ~2009
100920743512018414870311 ~2009
100920917816055255068711 ~2010
100925460592018509211911 ~2009
100929295792018585915911 ~2009
100932814616055968876711 ~2010
100948932178075914573711 ~2011
100950241192019004823911 ~2009
100951346032019026920711 ~2009
100951611232019032224711 ~2009
100953699232019073984711 ~2009
100954168192019083363911 ~2009
100954424816057265488711 ~2010
100956413416057384804711 ~2010
100959968032019199360711 ~2009
100961170792019223415911 ~2009
100962342376057740542311 ~2010
100971746512019434930311 ~2009
1009726858132311259459312 ~2012
Exponent Prime Factor Dig. Year
100985376232019707524711 ~2009
100989697336059381839911 ~2010
100989898432019797968711 ~2009
100999988992019999779911 ~2009
101001615736060096943911 ~2010
101001673912020033478311 ~2009
101004421192020088423911 ~2009
101012975992020259519911 ~2009
101016848992020336979911 ~2009
101016872098081349767311 ~2011
101018609992020372199911 ~2009
101022184912020443698311 ~2009
101022237736061334263911 ~2010
101023653232020473064711 ~2009
101026065712020521314311 ~2009
101028128992020562579911 ~2009
1010301360710103013607112 ~2011
101031688912020633778311 ~2009
1010353851740414154068112 ~2012
101046553912020931078311 ~2009
101047917712020958354311 ~2009
101053801432021076028711 ~2009
101057337832021146756711 ~2009
101058382432021167648711 ~2009
1010663341724255920200912 ~2012
Exponent Prime Factor Dig. Year
101071224976064273498311 ~2010
101074032592021480651911 ~2009
101074393792021487875911 ~2009
101074627198085970175311 ~2011
101079835912021596718311 ~2009
101084307232021686144711 ~2009
101085263032021705260711 ~2009
101088205312021764106311 ~2009
101089814816065388888711 ~2010
1010899993910108999939112 ~2011
101090592112021811842311 ~2009
101092123432021842468711 ~2009
101092583392021851667911 ~2009
101095346632021906932711 ~2009
101100164392022003287911 ~2009
101102087936066125275911 ~2010
101112357592022247151911 ~2009
1011206454116179303265712 ~2011
101128543432022570868711 ~2009
101143278592022865571911 ~2009
101143855792022877115911 ~2009
101150382592023007651911 ~2009
101150653912023013078311 ~2009
101151023512023020470311 ~2009
101153345632023066912711 ~2009
Home
4.828.532 digits
e-mail
25-06-01