Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
106000344112120006882311 ~2009
106001191192120023823911 ~2009
1060025464957241375104712 ~2013
106005526432120110528711 ~2009
106009991512120199830311 ~2009
106012260718480980856911 ~2011
1060148857127563870284712 ~2012
106016421232120328424711 ~2009
106018009312120360186311 ~2009
106026645712120532914311 ~2009
106028277592120565551911 ~2009
106031616232120632324711 ~2009
106033225312120664506311 ~2009
106033504192120670083911 ~2009
106036546736362192803911 ~2010
106044967192120899343911 ~2009
106052169712121043394311 ~2009
106053300418484264032911 ~2011
1060545701314847639818312 ~2011
106058410192121168203911 ~2009
106060057378484804589711 ~2011
106064365312121287306311 ~2009
106068985312121379706311 ~2009
106070777632121415552711 ~2009
1060729756725457514160912 ~2012
Exponent Prime Factor Dig. Year
106076088832121521776711 ~2009
106077619736364657183911 ~2010
106081721176364903270311 ~2010
106082198992121643979911 ~2009
106089557512121791150311 ~2009
106090755832121815116711 ~2009
106095409792121908195911 ~2009
1061011468942440458756112 ~2012
106106219512122124390311 ~2009
106107576592122151531911 ~2009
106108000432122160008711 ~2009
106112177632122243552711 ~2009
1061139848940323314258312 ~2012
106114024192122280483911 ~2009
106119886432122397728711 ~2009
1061218877325469253055312 ~2012
106125526312122510526311 ~2009
1061284558923348260295912 ~2012
106142865416368571924711 ~2010
106148614432122972288711 ~2009
106150760512123015210311 ~2009
106156499392123129987911 ~2009
106157495632123149912711 ~2009
106159720192123194403911 ~2009
106162658392123253167911 ~2009
Exponent Prime Factor Dig. Year
106164883498493190679311 ~2011
106167299512123345990311 ~2009
106167823912123356478311 ~2009
106168440832123368816711 ~2009
106171583392123431667911 ~2009
106173161032123463220711 ~2009
106175748112123514962311 ~2009
106177739512123554790311 ~2009
106177929736370675783911 ~2010
106185034312123700686311 ~2009
106197857336371871439911 ~2010
106205249512124104990311 ~2009
106205368736372322123911 ~2010
106207985992124159719911 ~2009
106212629992124252599911 ~2009
106213342336372800539911 ~2010
106215519112124310382311 ~2009
106216496392124329927911 ~2009
1062178036310621780363112 ~2011
106218885592124377711911 ~2009
106228612376373716742311 ~2010
106230718616373843116711 ~2010
106232954512124659090311 ~2009
106236066416374163984711 ~2010
106236337312124726746311 ~2009
Exponent Prime Factor Dig. Year
106236460936374187655911 ~2010
1062366829944619406855912 ~2013
106237988536374279311911 ~2010
106245894478499671557711 ~2011
106250136136375008167911 ~2010
106252507918500200632911 ~2011
106252587718500207016911 ~2011
106254394912125087898311 ~2009
106256985112125139702311 ~2009
106259885578500790845711 ~2011
1062615007910626150079112 ~2011
106272761992125455239911 ~2009
106276968112125539362311 ~2009
106278006712125560134311 ~2009
1062781239742511249588112 ~2013
106280014792125600295911 ~2009
106283952592125679051911 ~2009
1062902563317006441012912 ~2012
106292614792125852295911 ~2009
106293165592125863311911 ~2009
106295616712125912334311 ~2009
106297509616377850576711 ~2010
106298486392125969727911 ~2009
106300944112126018882311 ~2009
106306955392126139107911 ~2009
Home
4.828.532 digits
e-mail
25-06-01