Home Free Reseller Hosting Program, Anonymous 24x7 Clients Support, Fast 24x7 Reseller Support e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
1280297889112802978891112 ~2012
128032258937681935535911 ~2011
128034260937682055655911 ~2011
1280360185717925042599912 ~2012
128040002992560800059911 ~2010
128043400192560868003911 ~2010
128050703632561014072711 ~2010
1280620204110244961632912 ~2011
128066896912561337938311 ~2010
128072387217684343232711 ~2011
128072820112561456402311 ~2010
1280757304110246058432912 ~2011
128085447112561708942311 ~2010
1280861842320493789476912 ~2012
128086463032561729260711 ~2010
1280931663120494906609712 ~2012
128101097032562021940711 ~2010
128101783792562035675911 ~2010
128102288032562045760711 ~2010
128103548992562070979911 ~2010
128104699337686281959911 ~2011
128130178312562603566311 ~2010
128132076377687924582311 ~2011
1281323486910250587895312 ~2011
1281330953910250647631312 ~2011
Exponent Prime Factor Dig. Year
128141187112562823742311 ~2010
128141378512562827570311 ~2010
128142330112562846602311 ~2010
128147044912562940898311 ~2010
128147475592562949511911 ~2010
128154540832563090816711 ~2010
1281571384969204854784712 ~2013
1281582370138447471103112 ~2013
1281605830110252846640912 ~2011
128167501192563350023911 ~2010
128168538112563370762311 ~2010
128169664737690179883911 ~2011
128180851912563617038311 ~2010
1281852813720509645019312 ~2012
128188597432563771948711 ~2010
128195730232563914604711 ~2010
128196251512563925030311 ~2010
128201288512564025770311 ~2010
128238194392564763887911 ~2010
128238280792564765615911 ~2010
128238497992564769959911 ~2010
128249573577694974414311 ~2011
128250331312565006626311 ~2010
128251676512565033530311 ~2010
1282548598353867041128712 ~2013
Exponent Prime Factor Dig. Year
1282552259910260418079312 ~2011
128268932392565378647911 ~2010
128269038112565380762311 ~2010
128269664577696179874311 ~2011
128269714312565394286311 ~2010
128279392137696763527911 ~2011
128285279032565705580711 ~2010
128286702592565734051911 ~2010
128292388792565847775911 ~2010
1282941484110263531872912 ~2011
1282978595910263828767312 ~2011
128302567377698154042311 ~2011
128302917592566058351911 ~2010
1283073334710264586677712 ~2011
1283143525710265148205712 ~2011
128314689712566293794311 ~2010
1283153892712831538927112 ~2012
128328644631817...07960914 2023
128329036312566580726311 ~2010
128333717777700023066311 ~2011
128334742937700084575911 ~2011
128338571032566771420711 ~2010
128346978017700818680711 ~2011
128353310512567066210311 ~2010
128360898177701653890311 ~2011
Exponent Prime Factor Dig. Year
128366068192567321363911 ~2010
128377162312567543246311 ~2010
128390711032567814220711 ~2010
1284006765112840067651112 ~2012
128402396032568047920711 ~2010
128402632217704157932711 ~2011
128409553432568191068711 ~2010
128412507832568250156711 ~2010
128412976912568259538311 ~2010
128414159577704849574311 ~2011
128417713912568354278311 ~2010
1284201028723115618516712 ~2012
128420824192568416483911 ~2010
128431059592568621191911 ~2010
128437418632568748372711 ~2010
128441315512568826310311 ~2010
128446386232568927724711 ~2010
128446631032568932620711 ~2010
1284543960120552703361712 ~2012
128466708712569334174311 ~2010
1284672506917985415096712 ~2012
128470773112569415462311 ~2010
128478561112569571222311 ~2010
128487376192569747523911 ~2010
128489151177709349070311 ~2011
Home
4.768.925 digits
e-mail
25-05-04