Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
112393822792247876455911 ~2010
112396825432247936508711 ~2010
112397556712247951134311 ~2010
1124025225111240252251112 ~2011
112406163016744369780711 ~2011
1124079306124729744734312 ~2012
112408644712248172894311 ~2010
112412913112248258262311 ~2010
112422530632248450612711 ~2010
112425138536745508311911 ~2011
112426480312248529606311 ~2010
112428283912248565678311 ~2010
112428337432248566748711 ~2010
1124299441911242994419112 ~2011
112433707912248674158311 ~2010
112438747736746324863911 ~2011
1124496367911244963679112 ~2011
112450674898996053991311 ~2011
112455092512249101850311 ~2010
1124664215953983882363312 ~2013
1124713264311247132643112 ~2011
112476210178998096813711 ~2011
112489081198999126495311 ~2011
112492769392249855387911 ~2010
112493614136749616847911 ~2011
Exponent Prime Factor Dig. Year
112500650632250013012711 ~2010
112502835712250056714311 ~2010
112503071632250061432711 ~2010
112503199912250063998311 ~2010
112506037136750362227911 ~2011
112507423192250148463911 ~2010
112508330632250166612711 ~2010
112514665432250293308711 ~2010
112515316192250306323911 ~2010
1125203491715752848883912 ~2012
112524945592250498911911 ~2010
112534539232250690784711 ~2010
112543760176752625610311 ~2011
112546796938002...61723114 2025
112546799512250935990311 ~2010
1125477082727011449984912 ~2012
112558818592251176371911 ~2010
112558952216753537132711 ~2011
1125672332374294373931912 ~2013
112568672632251373452711 ~2010
112574434192251488683911 ~2010
1125755362311257553623112 ~2011
112579827416754789644711 ~2011
1125822715911258227159112 ~2011
112587571976755254318311 ~2011
Exponent Prime Factor Dig. Year
112592334232251846684711 ~2010
1125999399111259993991112 ~2011
112603220392252064407911 ~2010
112611591112252231822311 ~2010
112613282032252265640711 ~2010
112616635312252332706311 ~2010
112624652392252493047911 ~2010
1126250886118020014177712 ~2012
112634166832252683336711 ~2010
112636269712252725394311 ~2010
112642836712252856734311 ~2010
112651802336759108139911 ~2011
112653583192253071663911 ~2010
112657758479012620677711 ~2011
112660461616759627696711 ~2011
112660914119012873128911 ~2011
112665005219013200416911 ~2011
112673386616760403196711 ~2011
112675736999014058959311 ~2011
112676839016760610340711 ~2011
112677333112253546662311 ~2010
112679187712253583754311 ~2010
112683047632253660952711 ~2010
112684310392253686207911 ~2010
112684433392253688667911 ~2010
Exponent Prime Factor Dig. Year
112693549312253870986311 ~2010
112693849432253876988711 ~2010
112697363632253947272711 ~2010
112704806032254096120711 ~2010
112707183232254143664711 ~2010
112708837312254176746311 ~2010
1127096648915779353084712 ~2012
112711645616762698736711 ~2011
112718246392254364927911 ~2010
112720698712254413974311 ~2010
112730830499018466439311 ~2011
112731195232254623904711 ~2010
112734887279018790981711 ~2011
112736241232254724824711 ~2010
112738215119019057208911 ~2011
112744523536764671411911 ~2011
112747832512254956650311 ~2010
112754690392255093807911 ~2010
1127551506754122472321712 ~2013
112757729992255154599911 ~2010
112758231776765493906311 ~2011
112766283712255325674311 ~2010
1127690009336086080297712 ~2012
112779733192255594663911 ~2010
1127803687715789251627912 ~2012
Home
4.828.532 digits
e-mail
25-06-01