Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
1517552143721245730011912 ~2013
151768126913035362538311 ~2011
151768342379106100542311 ~2012
151780620233035612404711 ~2011
151789380113035787602311 ~2011
151791077633035821552711 ~2011
151796175019107770500711 ~2012
151798902619107934156711 ~2012
151802729513036054590311 ~2011
151809765713036195314311 ~2011
151810470833036209416711 ~2011
151831311233036626224711 ~2011
151846204619110772276711 ~2012
151847320913036946418311 ~2011
151859990393037199807911 ~2011
151866076433037321528711 ~2011
151866884033037337680711 ~2011
151885746233037714924711 ~2011
151891158713037823174311 ~2011
151892135513037842710311 ~2011
151895938193037918763911 ~2011
1519076156339495980063912 ~2013
151917994313038359886311 ~2011
1519182267163805655218312 ~2014
1519212914912153703319312 ~2012
Exponent Prime Factor Dig. Year
151925437913038508758311 ~2011
1519346902112154775216912 ~2012
151937686193038753723911 ~2011
151942156913038843138311 ~2011
151944752393038895047911 ~2011
151945025033038900500711 ~2011
1519530430315195304303112 ~2012
151955108993039102179911 ~2011
151962533393039250667911 ~2011
151972739513039454790311 ~2011
151975163033039503260711 ~2011
151980355793039607115911 ~2011
1519887865721278430119912 ~2013
151996882913039937658311 ~2011
152006066393040121327911 ~2011
152010871793040217435911 ~2011
152014657913040293158311 ~2011
152015079113040301582311 ~2011
1520169560912161356487312 ~2012
152021260313040425206311 ~2011
152021436113040428722311 ~2011
152030402633040608052711 ~2011
152035363433040707268711 ~2011
152036105993040722119911 ~2011
152039768393040795367911 ~2011
Exponent Prime Factor Dig. Year
1520416109912163328879312 ~2012
152052405179123144310311 ~2012
152052924713041058494311 ~2011
152058228233041164564711 ~2011
152059221593041184431911 ~2011
1520628246124330051937712 ~2013
152062969979123778198311 ~2012
152074427513041488550311 ~2011
152078011313041560226311 ~2011
152081784233041635684711 ~2011
1520882118133459406598312 ~2013
152092912313041858246311 ~2011
152093874233041877484711 ~2011
152114711393042294227911 ~2011
1521160249112169281992912 ~2012
152116723193042334463911 ~2011
152118243593042364871911 ~2011
152123195993042463919911 ~2011
152127250193042545003911 ~2011
152147840033042956800711 ~2011
152175343313043506866311 ~2011
152175659393043513187911 ~2011
152177615633043552312711 ~2011
152181304433043626088711 ~2011
152183560313043671206311 ~2011
Exponent Prime Factor Dig. Year
152195806433043916128711 ~2011
152198209619131892576711 ~2012
152198603532155...25984914 2023
152200070633044001412711 ~2011
1522260771115222607711112 ~2012
152226869393044537387911 ~2011
1522310653336535455679312 ~2013
152232727193044654543911 ~2011
1522415697770031122094312 ~2014
152258588993045171779911 ~2011
152273930633045478612711 ~2011
152274264113045485282311 ~2011
152284221179137053270311 ~2012
152293318913045866378311 ~2011
152301717833046034356711 ~2011
152313732113046274642311 ~2011
152314491113046289822311 ~2011
152315955593046319111911 ~2011
152318163713046363274311 ~2011
152321185913046423718311 ~2011
152328470339139708219911 ~2012
152331066593046621331911 ~2011
152334563633046691272711 ~2011
1523401971115234019711112 ~2012
152341732313046834646311 ~2011
Home
4.724.182 digits
e-mail
25-04-13