Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
159509765513190195310311 ~2011
159513887513190277750311 ~2011
159515233193190304663911 ~2011
159524623433190492468711 ~2011
159528995633190579912711 ~2011
159529178393190583567911 ~2011
159544015313190880306311 ~2011
159545747993190914959911 ~2011
1595505592738292134224912 ~2013
159551141513191022830311 ~2011
159556151633191123032711 ~2011
159564967793191299355911 ~2011
159568095593191361911911 ~2011
159572591771145...08908714 2023
159573588833191471776711 ~2011
159575414033191508280711 ~2011
159578538713191570774311 ~2011
159579583913191591678311 ~2011
159580030313191600606311 ~2011
1595818582712766548661712 ~2012
1595868325938300839821712 ~2013
1595899361928726188514312 ~2013
159603551393192071027911 ~2011
159605565713192111314311 ~2011
159629512193192590243911 ~2011
Exponent Prime Factor Dig. Year
1596468008912771744071312 ~2012
159655613513193112270311 ~2011
159664742993193294859911 ~2011
159666820313193336406311 ~2011
159676620833193532416711 ~2011
1596783653912774269231312 ~2012
1596795134341516673491912 ~2013
159679804619580788276711 ~2012
159680039179580802350311 ~2012
159681532913193630658311 ~2011
159691998713193839974311 ~2011
159709471979582568318311 ~2012
159716231633194324632711 ~2011
159730712774676...69905714 2024
159734951513194699030311 ~2011
1597415608712779324869712 ~2012
159748406993194968139911 ~2011
159749404819584964288711 ~2012
159755980433195119608711 ~2011
159755998913195119978311 ~2011
159758299793195165995911 ~2011
159770770433195415408711 ~2011
159773156033195463120711 ~2011
159777274433195545488711 ~2011
159781225913195624518311 ~2011
Exponent Prime Factor Dig. Year
159781989593195639791911 ~2011
159792032633195840652711 ~2011
1598026256338352630151312 ~2013
1598029705722372415879912 ~2013
159811118033196222360711 ~2011
159813295313196265906311 ~2011
159818671793196373435911 ~2011
159821425313196428506311 ~2011
159824211833196484236711 ~2011
159834942233196698844711 ~2011
159845907113196918142311 ~2011
159849884993196997699911 ~2011
159855150113197103002311 ~2011
159862501793197250035911 ~2011
159863156513197263130311 ~2011
159870106913197402138311 ~2011
159872608793197452175911 ~2011
159878817713197576354311 ~2011
159883823033197676460711 ~2011
1598847852125581565633712 ~2013
159885043193197700863911 ~2011
159886351913197727038311 ~2011
159887105339593226319911 ~2012
159905505713198110114311 ~2011
159912676193198253523911 ~2011
Exponent Prime Factor Dig. Year
1599174467912793395743312 ~2012
159918547313198370946311 ~2011
159932507539595950451911 ~2012
1599536778125592588449712 ~2013
1599620077112796960616912 ~2012
159980680433199613608711 ~2011
1599869171912798953375312 ~2012
159987827033199756540711 ~2011
159992900633199858012711 ~2011
159993355913199867118311 ~2011
1599988195112799905560912 ~2012
1599994985938399879661712 ~2013
160000507793200010155911 ~2011
1600039354776801889025712 ~2014
1600066626716000666267112 ~2012
1600102561128801846099912 ~2013
1600209792716002097927112 ~2012
1600210106951206723420912 ~2014
160025978993200519579911 ~2011
160027551233200551024711 ~2011
160028836193200576723911 ~2011
160034110019602046600711 ~2012
1600355605748010668171112 ~2014
160041535193200830703911 ~2011
1600416604316004166043112 ~2012
Home
4.724.182 digits
e-mail
25-04-13