Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
173024592113460491842311 ~2011
173029048313460580966311 ~2011
173032019633460640392711 ~2011
1730333491310382000947912 ~2012
173043724193460874483911 ~2011
173064139913461282798311 ~2011
1730666398713845331189712 ~2012
173068913633461378272711 ~2011
173074456433461489128711 ~2011
1730766193310384597159912 ~2012
173091322313461826446311 ~2011
173100956393462019127911 ~2011
173102062793462041255911 ~2011
173124523793462490475911 ~2011
173128450193462569003911 ~2011
1731370940913850967527312 ~2012
173153068913463061378311 ~2011
1731545170113852361360912 ~2012
173160827393463216547911 ~2011
173165724113463314482311 ~2011
173174223713463484474311 ~2011
173178249833463564996711 ~2011
1731977706127711643297712 ~2013
1732005413913856043311312 ~2012
173200913393464018267911 ~2011
Exponent Prime Factor Dig. Year
1732037821310392226927912 ~2012
1732063564317320635643112 ~2013
173212543433464250868711 ~2011
173212906313464258126311 ~2011
173218549433464370988711 ~2011
1732319835710393919014312 ~2012
1732471696110394830176712 ~2012
173251684913465033698311 ~2011
173266272113465325442311 ~2011
173268459233465369184711 ~2011
173272040033465440800711 ~2011
173279883113465597662311 ~2011
173280396113465607922311 ~2011
173282545913465650918311 ~2011
173285714393465714287911 ~2011
173287416232443...68843114 2024
173289321233465786424711 ~2011
173291917793465838355911 ~2011
173297190593465943811911 ~2011
173300083793466001675911 ~2011
173313146033466262920711 ~2011
173313750593466275011911 ~2011
1733154306717331543067112 ~2013
1733178576110399071456712 ~2012
173319264593466385291911 ~2011
Exponent Prime Factor Dig. Year
173319469793466389395911 ~2011
173323039313466460786311 ~2011
1733379966727734079467312 ~2013
173352794633467055892711 ~2011
173358027233467160544711 ~2011
173360989313467219786311 ~2011
1733670007710402020046312 ~2012
173367845993467356919911 ~2011
1733755015931207590286312 ~2013
173376017513467520350311 ~2011
173383728233467674564711 ~2011
173386491233467729824711 ~2011
173391757793467835155911 ~2011
173400727913468014558311 ~2011
173409855233468197104711 ~2011
1734139375941619345021712 ~2014
173432144633468642892711 ~2011
1734371794317343717943112 ~2013
1734391885327750270164912 ~2013
173447668913468953378311 ~2011
1734493051713875944413712 ~2012
173451760313469035206311 ~2011
1734558249117345582491112 ~2013
173457158993469143179911 ~2011
1734598882327753582116912 ~2013
Exponent Prime Factor Dig. Year
1734745633713877965069712 ~2012
173475182033469503640711 ~2011
173480689433469613788711 ~2011
173482459193469649183911 ~2011
173487995633469759912711 ~2011
1734885715710409314294312 ~2012
173492625593469852511911 ~2011
173494283633469885672711 ~2011
173495111993469902239911 ~2011
173511216113470224322311 ~2011
1735141416110410848496712 ~2012
1735186031310411116187912 ~2012
1735304001131235472019912 ~2013
1735307105913882456847312 ~2012
173532375713470647514311 ~2011
173539871033470797420711 ~2011
173547811313470956226311 ~2011
1735654835913885238687312 ~2012
173567349113471346982311 ~2011
173574508793471490175911 ~2011
173576182793471523655911 ~2011
1735793142741659035424912 ~2014
1735831868924301646164712 ~2013
1735863442113886907536912 ~2012
1735899712741661593104912 ~2014
Home
4.724.182 digits
e-mail
25-04-13