Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
1827378668925583301364712 ~2013
182739946313654798926311 ~2011
1827516091918275160919112 ~2013
1827519709310965118255912 ~2012
182761837913655236758311 ~2011
182784489833655689796711 ~2011
182789802113655796042311 ~2011
1828008430114624067440912 ~2013
182804601713656092034311 ~2011
182805352913656107058311 ~2011
182842290593656845811911 ~2011
182848140713656962814311 ~2011
182852578913657051578311 ~2011
182863147433657262948711 ~2011
1828658901710971953410312 ~2012
1828721635710972329814312 ~2012
182872798913657455978311 ~2011
182874463793657489275911 ~2011
182876315393657526307911 ~2011
182906343113658126862311 ~2011
182907713993658154279911 ~2011
1829090959918290909599112 ~2013
1829104859310974629155912 ~2012
182911617833658232356711 ~2011
182924837393658496747911 ~2011
Exponent Prime Factor Dig. Year
182940588593658811771911 ~2011
1829465116110976790696712 ~2012
182955967793659119355911 ~2011
1829628305310977769831912 ~2012
182964310193659286203911 ~2011
182964804593659296091911 ~2011
182967060233659341204711 ~2011
182980162793659603255911 ~2011
182988661913659773238311 ~2011
182995800593659916011911 ~2011
183000561113660011222311 ~2011
183011707913660234158311 ~2011
183012272993660245459911 ~2011
1830136052914641088423312 ~2013
183022668833660453376711 ~2011
183034332833660686656711 ~2011
1830365665340268044636712 ~2014
183038130233660762604711 ~2011
183042219593660844391911 ~2011
183044154713660883094311 ~2011
1830574378329289190052912 ~2013
183059363393661187267911 ~2011
183061054913661221098311 ~2011
183062613713661252274311 ~2011
1830738445329291815124912 ~2013
Exponent Prime Factor Dig. Year
1830741026958583712860912 ~2014
1830769788718307697887112 ~2013
183080905193661618103911 ~2011
183085475993661709519911 ~2011
1830869176940279121891912 ~2014
183090213233661804264711 ~2011
1830933299943942399197712 ~2014
1830939056914647512455312 ~2013
183095023313661900466311 ~2011
183095707913661914158311 ~2011
1830975645710985853874312 ~2012
183101462033662029240711 ~2011
1831259752114650078016912 ~2013
183134038193662680763911 ~2011
183138593633662771872711 ~2011
183155894033663117880711 ~2011
183171097433663421948711 ~2011
183187557233663751144711 ~2011
1831920667114655365336912 ~2013
183195190793663903815911 ~2011
183208095833664161916711 ~2011
183212328833664246576711 ~2011
1832295921710993775530312 ~2012
1832319748114658557984912 ~2013
1832553427310995320563912 ~2012
Exponent Prime Factor Dig. Year
183257431193665148623911 ~2011
183266353313665327066311 ~2011
183277434113665548682311 ~2011
183291085193665821703911 ~2011
183299016713665980334311 ~2011
183300877913666017558311 ~2011
183308149793666162995911 ~2011
1833119611114664956888912 ~2013
183312403313666248066311 ~2011
1833231660110999389960712 ~2012
183323708633666474172711 ~2011
183331456793666629135911 ~2011
1833329824110999978944712 ~2012
183339074513666781490311 ~2011
183350227913667004558311 ~2011
183366894113667337882311 ~2011
1833736403914669891231312 ~2013
183380602913667612058311 ~2011
183387390113667747802311 ~2011
183401523713668030474311 ~2011
183404255993668085119911 ~2011
1834075308718340753087112 ~2013
183414011393668280227911 ~2011
183422775713668455514311 ~2011
183426498833668529976711 ~2011
Home
4.724.182 digits
e-mail
25-04-13