Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
1058032701119044588619912 ~2012
105804675592116093511911 ~2009
105805993432116119868711 ~2009
105813746536348824791911 ~2010
105814601992116292039911 ~2009
105816203176348972190311 ~2010
105818534336349112059911 ~2010
105820093936349205635911 ~2010
1058279281910582792819112 ~2011
105837583192116751663911 ~2009
105842404312116848086311 ~2009
105844790392116895807911 ~2009
105850128592117002571911 ~2009
105854585998468366879311 ~2011
105855580378468446429711 ~2011
1058561913774099333959112 ~2013
105856442032117128840711 ~2009
105858542992117170859911 ~2009
1058605402727523740470312 ~2012
105863897632117277952711 ~2009
105864918712117298374311 ~2009
105865315312117306306311 ~2009
105866908432117338168711 ~2009
1058682873110586828731112 ~2011
105871171816352270308711 ~2010
Exponent Prime Factor Dig. Year
105871759792117435195911 ~2009
1058748889316939982228912 ~2012
105876552232117531044711 ~2009
105880187992117603759911 ~2009
105882828712117656574311 ~2009
105883054936352983295911 ~2010
105884171216353050272711 ~2010
105885172936353110375911 ~2010
105885221632117704432711 ~2009
105905383192118107663911 ~2009
105911473312118229466311 ~2009
105917994976355079698311 ~2010
105922891376355373482311 ~2010
105934882192118697643911 ~2009
105951449698476115975311 ~2011
1059543968327548143175912 ~2012
105955779832119115596711 ~2009
105960449392119208987911 ~2009
105962845192119256903911 ~2009
1059676116710596761167112 ~2011
105971510032119430200711 ~2009
105987100912119742018311 ~2009
105990898432119817968711 ~2009
105997534912119950698311 ~2009
105999792232119995844711 ~2009
Exponent Prime Factor Dig. Year
106000344112120006882311 ~2009
106001191192120023823911 ~2009
1060025464957241375104712 ~2013
106005526432120110528711 ~2009
106009991512120199830311 ~2009
106012260718480980856911 ~2011
1060148857127563870284712 ~2012
106016421232120328424711 ~2009
106018009312120360186311 ~2009
106026645712120532914311 ~2009
106028277592120565551911 ~2009
106031616232120632324711 ~2009
106033225312120664506311 ~2009
106033504192120670083911 ~2009
106036546736362192803911 ~2010
106044967192120899343911 ~2009
106052169712121043394311 ~2009
106053300418484264032911 ~2011
1060545701314847639818312 ~2011
106058410192121168203911 ~2009
106060057378484804589711 ~2011
106064365312121287306311 ~2009
106068985312121379706311 ~2009
106070777632121415552711 ~2009
1060729756725457514160912 ~2012
Exponent Prime Factor Dig. Year
106076088832121521776711 ~2009
106077619736364657183911 ~2010
106081721176364903270311 ~2010
106082198992121643979911 ~2009
106089557512121791150311 ~2009
106090755832121815116711 ~2009
106095409792121908195911 ~2009
1061011468942440458756112 ~2013
106106219512122124390311 ~2009
106107576592122151531911 ~2009
106108000432122160008711 ~2009
106112177632122243552711 ~2009
1061139848940323314258312 ~2012
106114024192122280483911 ~2009
106119886432122397728711 ~2009
1061218877325469253055312 ~2012
106125526312122510526311 ~2009
1061284558923348260295912 ~2012
1061334639757312070543912 ~2013
106142865416368571924711 ~2010
106148614432122972288711 ~2009
106150760512123015210311 ~2009
106156499392123129987911 ~2009
106157495632123149912711 ~2009
106159720192123194403911 ~2009
Home
4.933.056 digits
e-mail
25-07-20