Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
2242292137713453752826312 ~2013
224234543634484690872711 ~2012
224235172794484703455911 ~2012
2242374163117938993304912 ~2013
224251360314485027206311 ~2012
224257431834485148636711 ~2012
224291290434485825808711 ~2012
224301075234486021504711 ~2012
224307393714486147874311 ~2012
224333489394486669787911 ~2012
224334457314486689146311 ~2012
224341287714486825754311 ~2012
224361339714487226794311 ~2012
2243616455953846794941712 ~2014
2243711833922437118339112 ~2014
2243737075940387267366312 ~2014
224404025634488080512711 ~2012
2244052690758345369958312 ~2015
224423450634488469012711 ~2012
224429747036696...51375314 2025
224444005914488880118311 ~2012
2244495001349378890028712 ~2014
2244586577313467519463912 ~2013
224459752914489195058311 ~2012
224461433994489228679911 ~2012
Exponent Prime Factor Dig. Year
2244637433331424924066312 ~2014
2244712275122447122751112 ~2014
224482444434489648888711 ~2012
224490177714489803554311 ~2012
2245278219713471669318312 ~2013
224537192514490743850311 ~2012
2245491397313472948383912 ~2013
224556675834491133516711 ~2012
2245571835713473431014312 ~2013
2245590019313473540115912 ~2013
224573551914491471038311 ~2012
224574628314491492566311 ~2012
2245808539313474851235912 ~2013
224589580194491791603911 ~2012
224591373834491827476711 ~2012
2246012788717968102309712 ~2013
224629401834492588036711 ~2012
2246315503117970524024912 ~2013
2246361657713478169946312 ~2013
2246408023713478448142312 ~2013
224644963434492899268711 ~2012
224648558634492971172711 ~2012
2246490666135943850657712 ~2014
224650723914493014478311 ~2012
224665240434493304808711 ~2012
Exponent Prime Factor Dig. Year
224666918994493338379911 ~2012
224673233634493464672711 ~2012
224682525114493650502311 ~2012
224683277514493665550311 ~2012
2246903212322469032123112 ~2014
2246910537122469105371112 ~2014
224700591594494011831911 ~2012
224708704794494174095911 ~2012
224730016194494600323911 ~2012
224735674914494713498311 ~2012
224738799594494775991911 ~2012
224742788034494855760711 ~2012
224744959434494899188711 ~2012
224757008394495140167911 ~2012
224760579114495211582311 ~2012
224766324114495326482311 ~2012
224772435594495448711911 ~2012
224780258034495605160711 ~2012
224784259932139...54533714 2024
224786342034495726840711 ~2012
224793560514495871210311 ~2012
2248007575313488045451912 ~2013
224818474914496369498311 ~2012
224858402034497168040711 ~2012
2248675276322486752763112 ~2014
Exponent Prime Factor Dig. Year
224879608794497592175911 ~2012
2248821760113492930560712 ~2013
224894969994497899399911 ~2012
2248954721953974913325712 ~2015
224899609914497992198311 ~2012
224902595634498051912711 ~2012
224954431434499088628711 ~2012
2249573485335993175764912 ~2014
224959602114499192042311 ~2012
224969026194499380523911 ~2012
225015590514500311810311 ~2012
2250162421713500974530312 ~2013
225016322034500326440711 ~2012
225024392034500487840711 ~2012
225029905794500598115911 ~2012
225032997234500659944711 ~2012
2250335767313502014603912 ~2013
225037446714500748934311 ~2012
225038322594500766451911 ~2012
2250508417118004067336912 ~2013
225053941434501078828711 ~2012
225055151994501103039911 ~2012
225060881514501217630311 ~2012
225062423514501248470311 ~2012
225089717634501794352711 ~2012
Home
4.724.182 digits
e-mail
25-04-13