Home Free Reseller Hosting Program, Liquid Plan Builder, Multi-Currency Payments e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
158724133793174482675911 ~2011
158728072433174561448711 ~2011
158728334513174566690311 ~2011
158733736433174674728711 ~2011
158744546393174890927911 ~2011
1587456373712699650989712 ~2012
1587557746112700461968912 ~2012
158766871193175337423911 ~2011
158772180113175443602311 ~2011
158775676913175513538311 ~2011
158781551513175631030311 ~2011
158782241633175644832711 ~2011
158790808793175816175911 ~2011
158799943793175998875911 ~2011
1588121789950819897276912 ~2014
158816572793176331455911 ~2011
1588169492912705355943312 ~2012
1588179769712705438157712 ~2012
158827694993176553899911 ~2011
158829985913176599718311 ~2011
158843777539530626651911 ~2012
158845790219530747412711 ~2012
158853528593177070571911 ~2011
1588604494947658134847112 ~2014
158863521139531811267911 ~2012
Exponent Prime Factor Dig. Year
158871219833177424396711 ~2011
158884490393177689807911 ~2011
1588878975725422063611312 ~2013
158902605833178052116711 ~2011
1589079573725425273179312 ~2013
158908834193178176683911 ~2011
158920813793178416275911 ~2011
158934668393178693367911 ~2011
1589378642338145087415312 ~2013
158950447739537026863911 ~2012
158950675433179013508711 ~2011
158962431713179248634311 ~2011
158971554713179431094311 ~2011
158972105033179442100711 ~2011
158974111193179482223911 ~2011
158977287713179545754311 ~2011
1589819276912718554215312 ~2012
158989796393179795927911 ~2011
158993834033179876680711 ~2011
158995623619539737416711 ~2012
158999829113179996582311 ~2011
159000359513180007190311 ~2011
159011786179540707170311 ~2012
159013315819540798948711 ~2012
1590135216728622433900712 ~2013
Exponent Prime Factor Dig. Year
1590280228315902802283112 ~2012
159029373833180587476711 ~2011
159033373793180667475911 ~2011
159043377593180867551911 ~2011
159052058579543123514311 ~2012
159056809433181136188711 ~2011
159060319313181206386311 ~2011
159063134633181262692711 ~2011
1590634271912725074175312 ~2012
159063984113181279682311 ~2011
1590698693347720960799112 ~2014
159069934339544196059911 ~2012
159074051033181481020711 ~2011
159083771393181675427911 ~2011
159083873993181677479911 ~2011
159087150593181743011911 ~2011
159104768633182095372711 ~2011
1591111721912728893775312 ~2012
159111637012367...58708914 2023
159115228219546913692711 ~2012
159120769193182415383911 ~2011
159124264433182485288711 ~2011
159137865713182757314311 ~2011
159137891633182757832711 ~2011
1591448957912731591663312 ~2012
Exponent Prime Factor Dig. Year
1591461234715914612347112 ~2012
159148508633182970172711 ~2011
159152191139549131467911 ~2012
159155696993183113939911 ~2011
159160822433183216448711 ~2011
159170948393183418967911 ~2011
159171841313183436826311 ~2011
159182798033183655960711 ~2011
159184183313183683666311 ~2011
159187681433183753628711 ~2011
159189539033183790780711 ~2011
159193410233183868204711 ~2011
159197330993183946619911 ~2011
159200580419552034824711 ~2012
159203103139552186187911 ~2012
159207991793184159835911 ~2011
159208899833184177996711 ~2011
159215569193184311383911 ~2011
159224080313184481606311 ~2011
159237465779554247946311 ~2012
159238293713184765874311 ~2011
1592392203725478275259312 ~2013
159239443433184788868711 ~2011
159241145393184822907911 ~2011
159262125379555727522311 ~2012
Home
4.858.378 digits
e-mail
25-06-15