Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
2516051632720128413061712 ~2014
251652176635033043532711 ~2012
251674769635033495392711 ~2012
251676119395033522387911 ~2012
251681782195033635643911 ~2012
2516833504120134668032912 ~2014
2517059266960409422405712 ~2015
251729783395034595667911 ~2012
251732220835034644416711 ~2012
251734424035034688480711 ~2012
251737151395034743027911 ~2012
251742890515034857810311 ~2012
251758493395035169867911 ~2012
251776114195035522283911 ~2012
2517946441315107678647912 ~2013
251824473595036489471911 ~2012
2518306603715109839622312 ~2013
2518323047315109938283912 ~2013
251837349233087...01559914 2023
251839293835036785876711 ~2012
2518394397715110366386312 ~2013
251888855635037777112711 ~2012
2518978636120151829088912 ~2014
251898106195037962123911 ~2012
251898521515037970430311 ~2012
Exponent Prime Factor Dig. Year
251902844395038056887911 ~2012
251907022795038140455911 ~2012
251915667595038313351911 ~2012
251961758635039235172711 ~2012
2519727060740315632971312 ~2014
251978498515039569970311 ~2012
2519829243715118975462312 ~2013
251990497195039809943911 ~2012
251994687115039893742311 ~2012
2519982204725199822047112 ~2014
252004959235040099184711 ~2012
252005893435040117868711 ~2012
252048953995040979079911 ~2012
252060548515041210970311 ~2012
252066474235041329484711 ~2012
252070369315041407386311 ~2012
252074957635041499152711 ~2012
252075705235041514104711 ~2012
2520764363315124586179912 ~2013
252094267195041885343911 ~2012
2521034380115126206280712 ~2013
2521165244975634957347112 ~2015
252121211995042424239911 ~2012
252122286235042445724711 ~2012
252125132515042502650311 ~2012
Exponent Prime Factor Dig. Year
252125700595042514011911 ~2012
2521322520115127935120712 ~2013
252132711595042654231911 ~2012
2521330309120170642472912 ~2014
252138691435042773828711 ~2012
252155802373504...52943114 2023
2521580189315129481135912 ~2013
252159119995043182399911 ~2012
252160977235043219544711 ~2012
252175191115043503822311 ~2012
252205616035044112320711 ~2012
252210230995044204619911 ~2012
252214285915044285718311 ~2012
252218773915044375478311 ~2012
2522188528175665655843112 ~2015
2522458147925224581479112 ~2014
252246446395044928927911 ~2012
252246632515044932650311 ~2012
2522515080760540361936912 ~2015
252257399995045147999911 ~2012
252257579515045151590311 ~2012
252260404195045208083911 ~2012
252270150971205...21636714 2023
2522827063315136962379912 ~2013
2523069437315138416623912 ~2013
Exponent Prime Factor Dig. Year
252308169835046163396711 ~2012
2523279545920186236367312 ~2014
2523301204115139807224712 ~2013
252368274595047365491911 ~2012
2523728284325237282843112 ~2014
252375214931150...80080914 2023
2523912334120191298672912 ~2014
252398184235047963684711 ~2012
252400206715048004134311 ~2012
252448059595048961191911 ~2012
252448138435048962768711 ~2012
252455694115049113882311 ~2012
252476436715049528734311 ~2012
252480630235049612604711 ~2012
252498958315049979166311 ~2012
2525064274115150385644712 ~2013
252507497635050149952711 ~2012
252509806915050196138311 ~2012
2525104034920200832279312 ~2014
252515997595050319951911 ~2012
2525289904115151739424712 ~2013
252532774315050655486311 ~2012
2525374002115152244012712 ~2013
2525470567735356587947912 ~2014
252580598995051611979911 ~2012
Home
4.724.182 digits
e-mail
25-04-13