Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
1942460454731079367275312 ~2014
194248638233884972764711 ~2011
1942546545711655279274312 ~2013
1942581187711655487126312 ~2013
1942624438111655746628712 ~2013
1942757383311656544299912 ~2013
194285456393885709127911 ~2011
194291372633885827452711 ~2011
194295350633885907012711 ~2011
1942990999115543927992912 ~2013
1943024925711658149554312 ~2013
1943157482915545259863312 ~2013
194324100833886482016711 ~2011
1943257480715546059845712 ~2013
194340146513886802930311 ~2011
1943547712111661286272712 ~2013
194358651713887173034311 ~2011
1943678383311662070299912 ~2013
194369566913887391338311 ~2011
194372873513887457470311 ~2011
1943730673711662384042312 ~2013
1943772491311662634947912 ~2013
194378647793887572955911 ~2011
1943917111311663502667912 ~2013
1944005863311664035179912 ~2013
Exponent Prime Factor Dig. Year
194407255433888145108711 ~2011
194419330193888386603911 ~2011
1944247189134996449403912 ~2014
1944247963311665487779912 ~2013
194430966713888619334311 ~2011
194443925633888878512711 ~2011
1944469036158334071083112 ~2014
1944607149711667642898312 ~2013
194468306993889366139911 ~2011
194485487393889709747911 ~2011
194486612993889732259911 ~2011
194497454993889949099911 ~2011
194506966793890139335911 ~2011
1945165035777806601428112 ~2015
1945253731115562029848912 ~2013
194528645534446...36815914 2024
1945299870111671799220712 ~2013
194531934113890638682311 ~2011
194544369233890887384711 ~2011
1945536227915564289823312 ~2013
194555511833891110236711 ~2011
194557528433891150568711 ~2011
1945637465311673824791912 ~2013
194572050233891441004711 ~2011
1945840934915566727479312 ~2013
Exponent Prime Factor Dig. Year
194599662713891993254311 ~2011
1946244125311677464751912 ~2013
194627437913892548758311 ~2011
1946503039135037054703912 ~2014
194654218193893084363911 ~2011
194658915593893178311911 ~2011
1946609365711679656194312 ~2013
1946633917711679803506312 ~2013
1946663864346719932743312 ~2014
1946713239746721117752912 ~2014
1946775654111680653924712 ~2013
194687209193893744183911 ~2011
194699145713893982914311 ~2011
1947037025311682222151912 ~2013
194707522433894150448711 ~2011
194714447633894288952711 ~2011
194722395713894447914311 ~2011
194723577113894471542311 ~2011
194739112793894782255911 ~2011
194739648713894792974311 ~2011
194743473833894869476711 ~2011
1947460770111684764620712 ~2013
1947527821977901112876112 ~2015
194763702113895274042311 ~2011
194770226993895404539911 ~2011
Exponent Prime Factor Dig. Year
194778965633895579312711 ~2011
194779792313895595846311 ~2011
194792230793895844615911 ~2011
1947924028111687544168712 ~2013
194795182913895903658311 ~2011
1948131862942858900983912 ~2014
194815343993896306879911 ~2011
194817722033896354440711 ~2011
1948300730915586405847312 ~2013
1948534849727279487895912 ~2013
1948790093311692740559912 ~2013
1948917034111693502204712 ~2013
1948982809715591862477712 ~2013
194905671113898113422311 ~2011
194927909393898558187911 ~2011
1949453383311696720299912 ~2013
194955073793899101475911 ~2011
194960904233899218084711 ~2011
1949612575715596900605712 ~2013
194979072113899581442311 ~2011
194983634633899672692711 ~2011
195011575193900231503911 ~2011
1950280573711701683442312 ~2013
195051982913901039658311 ~2011
1950521028111703126168712 ~2013
Home
4.828.532 digits
e-mail
25-06-01