Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
270460318195409206363911 ~2012
270462295195409245903911 ~2012
270481211515409624230311 ~2012
270482270395409645407911 ~2012
2704855009316229130055912 ~2014
270489672595409793451911 ~2012
270505887835410117756711 ~2012
2705500142921644001143312 ~2014
270555248515411104970311 ~2012
270577488595411549771911 ~2012
2705808703121646469624912 ~2014
2705929256921647434055312 ~2014
270594525715411890514311 ~2012
2706001979316236011875912 ~2014
2706348489743301575835312 ~2015
270635598715412711974311 ~2012
2706385823316238314939912 ~2014
2706391843316238351059912 ~2014
2706454398116238726388712 ~2014
270659316115413186322311 ~2012
2706621112116239726672712 ~2014
270693460915413869218311 ~2012
270697838035413956760711 ~2012
270709042795414180855911 ~2012
2707188689921657509519312 ~2014
Exponent Prime Factor Dig. Year
270727690435414553808711 ~2012
270732993715414659874311 ~2012
270737418235414748364711 ~2012
270749529595414990591911 ~2012
270754055515415081110311 ~2012
270766641235415332824711 ~2012
270766654195415333083911 ~2012
270775348315415506966311 ~2012
2707818725921662549807312 ~2014
2707897546116247385276712 ~2014
2708114706116248688236712 ~2014
2708221258116249327548712 ~2014
270842890315416857806311 ~2012
270850093795417001875911 ~2012
270868961635417379232711 ~2012
270876758995417535179911 ~2012
270890209435417804188711 ~2012
2708916680965014000341712 ~2015
270902195995418043919911 ~2012
2709105760116254634560712 ~2014
270911804635418236092711 ~2012
270936042835418720856711 ~2012
270941353195418827063911 ~2012
2709506791121676054328912 ~2014
270957725035419154500711 ~2012
Exponent Prime Factor Dig. Year
2709585210743353363371312 ~2015
270975688195419513763911 ~2012
270995726635419914532711 ~2012
2710010245316260061471912 ~2014
2710081434116260488604712 ~2014
271010513035420210260711 ~2012
271040691715420813834311 ~2012
271045557115420911142311 ~2012
271057346995421146939911 ~2012
2710971809316265830855912 ~2014
2711469183716268815102312 ~2014
2711526029921692208239312 ~2014
271176926035423538520711 ~2012
271177141315423542826311 ~2012
271184426995423688539911 ~2012
271211415115424228302311 ~2012
2712345817965096299629712 ~2015
2712408429716274450578312 ~2014
271247428516862...41303114 2024
271251121915425022438311 ~2012
2712549370121700394960912 ~2014
2712662653721701301229712 ~2014
271270791835425415836711 ~2012
271296484315425929686311 ~2012
271299479515425989590311 ~2012
Exponent Prime Factor Dig. Year
2713090221716278541330312 ~2014
2713177461716279064770312 ~2014
271326641515426532830311 ~2012
271330551235426611024711 ~2012
271349037595426980751911 ~2012
271349183515426983670311 ~2012
271363066795427261335911 ~2012
271384697515427693950311 ~2012
271394118115427882362311 ~2012
271394772235427895444711 ~2012
271406662915428133258311 ~2012
2714165830116284994980712 ~2014
271429564795428591295911 ~2012
271448805835428976116711 ~2012
271457253715429145074311 ~2012
271459138435429182768711 ~2012
2714827242116288963452712 ~2014
271489587235429791744711 ~2012
271525747915430514958311 ~2012
2715281755716291690534312 ~2014
271530180715430603614311 ~2012
2715461230116292767380712 ~2014
271548684835430973696711 ~2012
271551930012260...92632715 2023
271572785035431455700711 ~2012
Home
4.724.182 digits
e-mail
25-04-13