Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
218073342594361466851911 ~2012
218079535434361590708711 ~2012
218080721034361614420711 ~2012
218089544634361790892711 ~2012
218101408434362028168711 ~2012
218110488234362209764711 ~2012
2181175354165435260623112 ~2015
218123820411196...87692715 2023
218126611194362532223911 ~2012
2181308860717450470885712 ~2013
218133369594362667391911 ~2012
218142996594362859931911 ~2012
218145018834362900376711 ~2012
218160514794363210295911 ~2012
218165098314363301966311 ~2012
218174150514363483010311 ~2012
218181851994363637039911 ~2012
2181836371313091018227912 ~2013
218212451394364249027911 ~2012
218212488594364249771911 ~2012
218216688114364333762311 ~2012
218232186714364643734311 ~2012
218241641394364832827911 ~2012
218242645434364852908711 ~2012
218263620594365272411911 ~2012
Exponent Prime Factor Dig. Year
218268189714365363794311 ~2012
218268602394365372047911 ~2012
2182806301717462450413712 ~2013
2182821628334925146052912 ~2014
218290063194365801263911 ~2012
218300687034366013740711 ~2012
218303474994366069499911 ~2012
218304397314366087946311 ~2012
218308817034366176340711 ~2012
218314288314366285766311 ~2012
218317248234366344964711 ~2012
218326456434366529128711 ~2012
218335808034366716160711 ~2012
2183373645139300725611912 ~2014
218338795314366775906311 ~2012
218339477994366789559911 ~2012
218342334234366846684711 ~2012
218345698194366913963911 ~2012
2183489204917467913639312 ~2013
218351702994367034059911 ~2012
218355047634367100952711 ~2012
218360413194367208263911 ~2012
218371009314367420186311 ~2012
2183726408917469811271312 ~2013
218378475234367569504711 ~2012
Exponent Prime Factor Dig. Year
218380592634367611852711 ~2012
218388889794367777795911 ~2012
2184175992113105055952712 ~2013
218423196714368463934311 ~2012
218429938914368598778311 ~2012
218437569114368751382311 ~2012
218443041594368860831911 ~2012
218444877834368897556711 ~2012
2184457483313106744899912 ~2013
218458268514369165370311 ~2012
2184622653121846226531112 ~2013
218465104434369302088711 ~2012
218465317194369306343911 ~2012
2184698074717477584597712 ~2013
2184719393313108316359912 ~2013
218475777234369515544711 ~2012
218476490394369529807911 ~2012
218479149714369582994311 ~2012
2184794937734956719003312 ~2014
218488261434369765228711 ~2012
2184954552134959272833712 ~2014
2184999569365549987079112 ~2015
218505583194370111663911 ~2012
2185075705313110454231912 ~2013
2185085687917480685503312 ~2013
Exponent Prime Factor Dig. Year
218521362594370427251911 ~2012
218524184034370483680711 ~2012
218524416834370488336711 ~2012
2185248889313111493335912 ~2013
218532912834370658256711 ~2012
2185341684113112050104712 ~2013
2185534396717484275173712 ~2013
218557637994371152759911 ~2012
218567198034371343960711 ~2012
2185773479917486187839312 ~2013
218600942994372018859911 ~2012
218608441794372168835911 ~2012
2186166274717489330197712 ~2013
218625681594372513631911 ~2012
2186276793713117660762312 ~2013
218639763834372795276711 ~2012
2186470025939356460466312 ~2014
218661658194373233163911 ~2012
2186725987348107971720712 ~2014
2186750296117494002368912 ~2013
218688071394373761427911 ~2012
2186904650917495237207312 ~2013
218701949994374038999911 ~2012
2187119001713122714010312 ~2013
2187160421952491850125712 ~2014
Home
4.828.532 digits
e-mail
25-06-01