Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
2283557763736536924219312 ~2014
228381202194567624043911 ~2012
228387110994567742219911 ~2012
228394980234567899604711 ~2012
2284111891336545790260912 ~2014
2284196011718273568093712 ~2013
228427627914568552558311 ~2012
228428036034568560720711 ~2012
228429569634568591392711 ~2012
2284308820113705852920712 ~2013
228447008994568940179911 ~2012
228457062234569141244711 ~2012
228458174514569163490311 ~2012
228467901714569358034311 ~2012
228483712194569674243911 ~2012
2284884803918279078431312 ~2013
228494750034569895000711 ~2012
228506284314570125686311 ~2012
228511037034570220740711 ~2012
2285149772931992096820712 ~2014
228515769834570315396711 ~2012
2285209657118281677256912 ~2013
228526009434570520188711 ~2012
2285365213718282921709712 ~2013
228551088234571021764711 ~2012
Exponent Prime Factor Dig. Year
228553340394571066807911 ~2012
228565387794571307755911 ~2012
228567013194571340263911 ~2012
2285729108932000207524712 ~2014
228574660914571493218311 ~2012
228574800834571496016711 ~2012
2285836578168575097343112 ~2015
2285865406118286923248912 ~2013
228591951234571839024711 ~2012
228636659394572733187911 ~2012
228637251234572745024711 ~2012
2286531522741157567408712 ~2014
228663683034573273660711 ~2012
228663867714573277354311 ~2012
2286694739941160505318312 ~2014
2286763621713720581730312 ~2013
228683367234573667344711 ~2012
228694026594573880531911 ~2012
228696326514573926530311 ~2012
2287015867313722095203912 ~2013
228725498034574509960711 ~2012
228726029394574520587911 ~2012
228728013834574560276711 ~2012
2287296700113723780200712 ~2013
2287312578722873125787112 ~2014
Exponent Prime Factor Dig. Year
2287346771313724080627912 ~2013
228738489114574769782311 ~2012
2287427317313724563903912 ~2013
228746472834574929456711 ~2012
228752604594575052091911 ~2012
2287608730118300869840912 ~2013
2287636853918301094831312 ~2013
228770320914575406418311 ~2012
2287862280722878622807112 ~2014
2287981288118303850304912 ~2013
228799201914575984038311 ~2012
228799664634575993292711 ~2012
228815830794576316615911 ~2012
2288205507122882055071112 ~2014
228830820234576616404711 ~2012
228837401514576748030311 ~2012
2288650797713731904786312 ~2013
2288886625713733319754312 ~2013
228890980914577819618311 ~2012
2289009826118312078608912 ~2013
228902150394578043007911 ~2012
228908377434578167548711 ~2012
228913850394578277007911 ~2012
228914940714578298814311 ~2012
228922264194578445283911 ~2012
Exponent Prime Factor Dig. Year
228929553594578591071911 ~2012
228939431514578788630311 ~2012
2289655705922896557059112 ~2014
228967547634579350952711 ~2012
228978632112111...88054314 2024
228990546834579810936711 ~2012
228993944034579878880711 ~2012
228997027794579940555911 ~2012
229001653914580033078311 ~2012
229004855514580097110311 ~2012
2290051500722900515007112 ~2014
229005367314580107346311 ~2012
229007404314580148086311 ~2012
229008022314580160446311 ~2012
229010786394580215727911 ~2012
229027616034580552320711 ~2012
229042702194580854043911 ~2012
2290486083713742916502312 ~2013
229048636434580972728711 ~2012
229050883194581017663911 ~2012
229051548594581030971911 ~2012
229057123914581142478311 ~2012
2290580959313743485755912 ~2013
229081108314581622166311 ~2012
229086426714581728534311 ~2012
Home
4.828.532 digits
e-mail
25-06-01