Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
2335515127714013090766312 ~2013
233560155834671203116711 ~2012
233571955914671439118311 ~2012
233575231314671504626311 ~2012
233579442714671588854311 ~2012
233586498834671729976711 ~2012
233592210714671844214311 ~2012
233598696714671973934311 ~2012
233609685834672193716711 ~2012
233616749514672334990311 ~2012
233630723394672614467911 ~2012
233634275994672685519911 ~2012
233646529314672930586311 ~2012
233657171634673143432711 ~2012
233657194314673143886311 ~2012
2336638279718693106237712 ~2013
233672297514673445950311 ~2012
233673023034673460460711 ~2012
233703587514674071750311 ~2012
2337053708918696429671312 ~2013
2337250906718698007253712 ~2013
233727401034674548020711 ~2012
233728878834674577576711 ~2012
2337331423314023988539912 ~2013
233742744714674854894311 ~2012
Exponent Prime Factor Dig. Year
2337453355118699626840912 ~2013
2337581955714025491734312 ~2013
2337621785314025730711912 ~2013
2337762980918702103847312 ~2013
233793616194675872323911 ~2012
233801749434676034988711 ~2012
233826862794676537255911 ~2012
2338339795714030038774312 ~2013
233840043834676800876711 ~2012
233845600194676912003911 ~2012
2338473259718707786077712 ~2013
233854194114677083882311 ~2012
233872026234677440524711 ~2012
233877665994677553319911 ~2012
233878825794677576515911 ~2012
2338878270723388782707112 ~2014
233896360794677927215911 ~2012
233905812234678116244711 ~2012
233912122194678242443911 ~2012
233920761594678415231911 ~2012
233928471714678569434311 ~2012
2339518282118716146256912 ~2013
233959807914679196158311 ~2012
233960890434679217808711 ~2012
233981555634679631112711 ~2012
Exponent Prime Factor Dig. Year
2339841841314039051047912 ~2013
2340056965314040341791912 ~2013
234033775794680675515911 ~2012
234036669594680733391911 ~2012
2340559067942130063222312 ~2014
2340569717314043418303912 ~2013
2340625183314043751099912 ~2013
234079694994681593899911 ~2012
2340796980114044781880712 ~2013
2340813985714044883914312 ~2013
234082024914681640498311 ~2012
234086781594681735631911 ~2012
234098620434681972408711 ~2012
234103256994682065139911 ~2012
234103392594682067851911 ~2012
234111256914682225138311 ~2012
234114100194682282003911 ~2012
2341158319718729266557712 ~2013
234118215234682364304711 ~2012
234133236834682664736711 ~2012
2341343511714048061070312 ~2013
2341379704114048278224712 ~2013
2341479775314048878651912 ~2013
234151160994683023219911 ~2012
2341677059918733416479312 ~2013
Exponent Prime Factor Dig. Year
234174545034683490900711 ~2012
234184273794683685475911 ~2012
234207604794684152095911 ~2012
234217603914684352078311 ~2012
234220676994684413539911 ~2012
234251280114685025602311 ~2012
234256353714685127074311 ~2012
234261554514685231090311 ~2012
234268989834685379796711 ~2012
2342892721732800498103912 ~2014
234327168234686543364711 ~2012
234328957794686579155911 ~2012
234338028234686760564711 ~2012
234339338514686786770311 ~2012
234350497194687009943911 ~2012
234350744994687014899911 ~2012
234356697594687133951911 ~2012
234378856314687577126311 ~2012
2343816427314062898563912 ~2013
234387274194687745483911 ~2012
234400897794688017955911 ~2012
234404774514688095490311 ~2012
234407602794688152055911 ~2012
2344085193714064511162312 ~2013
234409359234688187184711 ~2012
Home
4.828.532 digits
e-mail
25-06-01