Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
1738750310924342504352712 ~2013
173875223033477504460711 ~2011
1738852203710433113222312 ~2012
173893825793477876515911 ~2011
173899957193477999143911 ~2011
1739068671131303236079912 ~2013
173909257913478185158311 ~2011
173915878913478317578311 ~2011
1739188999352175669979112 ~2014
173923751513478475030311 ~2011
173937349313478746986311 ~2011
173937469433478749388711 ~2011
173937620033478752400711 ~2011
173948759513478975190311 ~2011
173955373913479107478311 ~2011
173957430833479148616711 ~2011
1739576239917395762399112 ~2013
1739619742113916957936912 ~2012
173991827993479836559911 ~2011
174004288793480085775911 ~2011
1740066735710440400414312 ~2012
174007825193480156503911 ~2011
174010073033480201460711 ~2011
174010282793480205655911 ~2011
174014592593480291851911 ~2011
Exponent Prime Factor Dig. Year
174014760833480295216711 ~2011
174016441193480328823911 ~2011
174016931393480338627911 ~2011
174023510513480470210311 ~2011
1740276436317402764363112 ~2013
1740285069127844561105712 ~2013
174029146193480582923911 ~2011
174032981633480659632711 ~2011
174040309913480806198311 ~2011
174046994393480939887911 ~2011
174051184912186...82469714 2023
174052912193481058243911 ~2011
174057106913481142138311 ~2011
1740589033113924712264912 ~2012
174061656593481233131911 ~2011
1740626399310443758395912 ~2012
174065932193481318643911 ~2011
1740693676110444162056712 ~2012
174081318833481626376711 ~2011
1741099090113928792720912 ~2012
174112335713482246714311 ~2011
174114123113482282462311 ~2011
174118585313482371706311 ~2011
174121227713482424554311 ~2011
1741349493710448096962312 ~2012
Exponent Prime Factor Dig. Year
1741487641113931901128912 ~2012
174149909033482998180711 ~2011
174158127593483162551911 ~2011
1741655359917416553599112 ~2013
174171063593483421271911 ~2011
174171583313483431666311 ~2011
174203862113484077242311 ~2011
174224536793484490735911 ~2011
174226908233484538164711 ~2011
174226963913484539278311 ~2011
174231090233484621804711 ~2011
1742318390941815641381712 ~2014
1742463294731364339304712 ~2013
174269235833485384716711 ~2011
174272952833485459056711 ~2011
1742730650345310996907912 ~2014
1742754462110456526772712 ~2012
174286241513485724830311 ~2011
174294912233485898244711 ~2011
174301024793486020495911 ~2011
1743046117710458276706312 ~2012
174311440913486228818311 ~2011
1743248247117432482471112 ~2013
174333003593486660071911 ~2011
1743388979913947111839312 ~2012
Exponent Prime Factor Dig. Year
174340165313486803306311 ~2011
174343907033486878140711 ~2011
174349979993486999599911 ~2011
174364594313487291886311 ~2011
1743712231710462273390312 ~2012
174379047233487580944711 ~2011
174384380633487687612711 ~2011
1743854978913950839831312 ~2012
1743899537310463397223912 ~2012
1743967627310463805763912 ~2012
174408157193488163143911 ~2011
174413901113488278022311 ~2011
174427183793488543675911 ~2011
174428121113488562422311 ~2011
174430426793488608535911 ~2011
1744319070717443190707112 ~2013
174438323633488766472711 ~2011
1744641229752339236891112 ~2014
1744652601710467915610312 ~2012
1744687373310468124239912 ~2012
174476818193489536363911 ~2011
1744785045710468710274312 ~2012
1744839386913958715095312 ~2012
174496125713489922514311 ~2011
1745066422713960531381712 ~2012
Home
4.933.056 digits
e-mail
25-07-20