Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
1757600899714060807197712 ~2013
175763077193515261543911 ~2011
175768170593515363411911 ~2011
1757707661310546245967912 ~2012
175776146513515522930311 ~2011
175783733993515674679911 ~2011
1757910891710547465350312 ~2012
175795285913515905718311 ~2011
175796606393515932127911 ~2011
175798322393515966447911 ~2011
175801923233516038464711 ~2011
175802493713516049874311 ~2011
1758038878114064311024912 ~2013
175806908393516138167911 ~2011
175812116393516242327911 ~2011
175812182993516243659911 ~2011
175813096313516261926311 ~2011
175821688193516433763911 ~2011
1758389076110550334456712 ~2012
1758499247324618989462312 ~2013
1758817114110552902684712 ~2012
1758937685310553626111912 ~2012
175899566473489...98764914 2023
1759092082114072736656912 ~2013
175921051193518421023911 ~2011
Exponent Prime Factor Dig. Year
1759230624110555383744712 ~2012
175936363313518727266311 ~2011
175949325713518986514311 ~2011
1759617655742230823736912 ~2014
175976571233519531424711 ~2011
175982646113519652922311 ~2011
175990468193519809363911 ~2011
175990994033519819880711 ~2011
1759990018114079920144912 ~2013
1760098927714080791421712 ~2013
176018372513520367450311 ~2011
176033303513520666070311 ~2011
176040261233520805224711 ~2011
1760424366717604243667112 ~2013
176044853993520897079911 ~2011
176055333713521106674311 ~2011
176058336593521166731911 ~2011
1760634013114085072104912 ~2013
176066833313521336666311 ~2011
176076696713521533934311 ~2011
176083824713521676494311 ~2011
176085229313521704586311 ~2011
176086518713521730374311 ~2011
176091295913521825918311 ~2011
176113086233522261724711 ~2011
Exponent Prime Factor Dig. Year
176114684033522293680711 ~2011
176114690033522293800711 ~2011
176121633113522432662311 ~2011
1761336121710568016730312 ~2012
176134319393522686387911 ~2011
176138310233522766204711 ~2011
1761409029742273816712912 ~2014
1761449010717614490107112 ~2013
176184916193523698323911 ~2011
176186291633523725832711 ~2011
176186802833523736056711 ~2011
176215984793524319695911 ~2011
1762196689714097573517712 ~2013
176221529393524430587911 ~2011
1762281856110573691136712 ~2012
176233009913524660198311 ~2011
176246405633524928112711 ~2011
176252401313525048026311 ~2011
1762526375324675369254312 ~2013
1762550660914100405287312 ~2013
176266320113525326402311 ~2011
176275187033525503740711 ~2011
176278111433525562228711 ~2011
176281109393525622187911 ~2011
176294668193525893363911 ~2011
Exponent Prime Factor Dig. Year
176295032993525900659911 ~2011
1762993834342311852023312 ~2014
176300556713526011134311 ~2011
176320902113526418042311 ~2011
176328476513526569530311 ~2011
176334638993526692779911 ~2011
176338578833526771576711 ~2011
176351775833527035516711 ~2011
176352942833527058856711 ~2011
176369367833527387356711 ~2011
176373246713527464934311 ~2011
176373974993527479499911 ~2011
176374477313527489546311 ~2011
176392525913527850518311 ~2011
176393251913527865038311 ~2011
1763990098714111920789712 ~2013
176404953075831...48494314 2025
176408261033528165220711 ~2011
176408683913528173678311 ~2011
176414877713528297554311 ~2011
1764212671714113701373712 ~2013
176431698113528633962311 ~2011
1764371962731758695328712 ~2013
176447662913528953258311 ~2011
176449730393528994607911 ~2011
Home
4.933.056 digits
e-mail
25-07-20