Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
180076772513601535450311 ~2011
180097271393601945427911 ~2011
180114011513602280230311 ~2011
180129057593602581151911 ~2011
1801324083728821185339312 ~2013
180135036593602700731911 ~2011
180144891833602897836711 ~2011
180170367833603407356711 ~2011
180172020233603440404711 ~2011
1801752536914414020295312 ~2013
1801798099975675520195912 ~2014
180187203113603744062311 ~2011
180193016033603860320711 ~2011
1801973239114415785912912 ~2013
180204646913604092938311 ~2011
1802110747310812664483912 ~2012
1802185321918021853219112 ~2013
180234213713604684274311 ~2011
1802475639710814853838312 ~2012
1802486285310814917711912 ~2012
180253314593605066291911 ~2011
180264184793605283695911 ~2011
180269709713605394194311 ~2011
180270623513605412470311 ~2011
180286393193605727863911 ~2011
Exponent Prime Factor Dig. Year
180290384033605807680711 ~2011
180290865113605817302311 ~2011
1802988093172119523724112 ~2014
1803063261710818379570312 ~2012
180307223993606144479911 ~2011
1803100665710818603994312 ~2012
1803178879310819073275912 ~2012
1803289212718032892127112 ~2013
180343929233606878584711 ~2011
180346944593606938891911 ~2011
180376778513607535570311 ~2011
1803811741710822870450312 ~2012
1803821427710822928566312 ~2012
180386022593607720451911 ~2011
1803986400110823918400712 ~2012
180399116633607982332711 ~2011
1804078492110824470952712 ~2012
1804143882728866302123312 ~2013
180417037313608340746311 ~2011
180419114033608382280711 ~2011
1804243381310825460287912 ~2012
180424595513608491910311 ~2011
1804307494110825844964712 ~2012
180431409113608628182311 ~2011
180431515793608630315911 ~2011
Exponent Prime Factor Dig. Year
180436393193608727863911 ~2011
180438239513608764790311 ~2011
1804396243710826377462312 ~2012
180453843593609076871911 ~2011
180466337993609326759911 ~2011
180475900913609518018311 ~2011
180498011513609960230311 ~2011
1805012567310830075403912 ~2012
180506233193610124663911 ~2011
1805223828718052238287112 ~2013
180525020633610500412711 ~2011
180526068113610521362311 ~2011
180531181793610623635911 ~2011
1805429680714443437445712 ~2013
180551496833611029936711 ~2011
180560747633611214952711 ~2011
180560888993611217779911 ~2011
180561654833611233096711 ~2011
1805661865114445294920912 ~2013
180573256313611465126311 ~2011
180575714633611514292711 ~2011
180580197833611603956711 ~2011
180584948033611698960711 ~2011
180588700793611774015911 ~2011
180590841713611816834311 ~2011
Exponent Prime Factor Dig. Year
1806213185914449705487312 ~2013
1806239193710837435162312 ~2012
180624085193612481703911 ~2011
1806277570110837665420712 ~2012
180638787713612775754311 ~2011
180642878633612857572711 ~2011
180646873313612937466311 ~2011
1806474097310838844583912 ~2012
1806504286110839025716712 ~2012
180651771113613035422311 ~2011
1806535223310839211339912 ~2012
180655173833613103476711 ~2011
180655427393613108547911 ~2011
180658890593613177811911 ~2011
1806618721310839712327912 ~2012
180663767597891...68331314 2023
180671497313613429946311 ~2011
180682982993613659659911 ~2011
1806874663918068746639112 ~2013
180701091113614021822311 ~2011
1807034673710842208042312 ~2012
180703714193614074283911 ~2011
180708055913614161118311 ~2011
180713005313614260106311 ~2011
180725333993614506679911 ~2011
Home
4.933.056 digits
e-mail
25-07-20