Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
186577517513731550350311 ~2011
186579230993731584619911 ~2011
186587472593731749451911 ~2011
186589235393731784707911 ~2011
1866099457918660994579112 ~2013
186647910593732958211911 ~2011
1866565564714932524517712 ~2013
186669009713733380194311 ~2011
186669459593733389191911 ~2011
186679979513733599590311 ~2011
186683135633733662712711 ~2011
186687370193733747403911 ~2011
1866890640718668906407112 ~2013
1866926848329870829572912 ~2013
186706705193734134103911 ~2011
1867105861714936846893712 ~2013
1867229361129875669777712 ~2013
186726691313734533826311 ~2011
186728088593734561771911 ~2011
1867315771711203894630312 ~2012
186732275393734645507911 ~2011
186749603033734992060711 ~2011
186752076713735041534311 ~2011
1867563766111205382596712 ~2012
186765796433735315928711 ~2011
Exponent Prime Factor Dig. Year
186767774993735355499911 ~2011
186776903513735538070311 ~2011
186779509433735590188711 ~2011
1867885440141093479682312 ~2014
186794862113735897242311 ~2011
1868072360914944578887312 ~2013
186807980633736159612711 ~2011
186809825633736196512711 ~2011
186811573433736231468711 ~2011
186813587393736271747911 ~2011
186828122513736562450311 ~2011
186851402513737028050311 ~2011
1868695165114949561320912 ~2013
186889468793737789375911 ~2011
186896004833737920096711 ~2011
186912422393738248447911 ~2011
186916672313738333446311 ~2011
1869168652114953349216912 ~2013
186924371993738487439911 ~2011
186925937393738518747911 ~2011
1869268487311215610923912 ~2012
186928738913738574778311 ~2011
1869310960111215865760712 ~2012
1869341075311216046451912 ~2012
186936086513738721730311 ~2011
Exponent Prime Factor Dig. Year
186941612033738832240711 ~2011
186944746913738894938311 ~2011
186960674513739213490311 ~2011
186960925433739218508711 ~2011
186966897833739337956711 ~2011
186981488633739629772711 ~2011
186987066713739741334311 ~2011
1869881299714959050397712 ~2013
187006217633740124352711 ~2011
187022489633740449792711 ~2011
187033126433740662528711 ~2011
187034033993740680679911 ~2011
1870348143118703481431112 ~2013
187038576713740771534311 ~2011
187043498993740869979911 ~2011
187043832833740876656711 ~2011
187053982193741079643911 ~2011
187054114991380...68626314 2023
187061119433741222388711 ~2011
187062260393741245207911 ~2011
187068061433741361228711 ~2011
187068718313741374366311 ~2011
1870823200714966585605712 ~2013
1870879453711225276722312 ~2012
187102653833742053076711 ~2011
Exponent Prime Factor Dig. Year
187103069633742061392711 ~2011
187105126793742102535911 ~2011
1871245334914969962679312 ~2013
187125413393742508267911 ~2011
1871255515329940088244912 ~2013
187129534193742590683911 ~2011
1871432701159885846435312 ~2014
187148291033742965820711 ~2011
1871521999711229131998312 ~2012
187155301313743106026311 ~2011
1871640999711229845998312 ~2012
187165675313743313506311 ~2011
187167699713743353994311 ~2011
187185039833743700796711 ~2011
1871865598111231193588712 ~2012
1871885125341181472756712 ~2014
187189770713743795414311 ~2011
1871970993711231825962312 ~2012
1872022363311232134179912 ~2012
187210035233744200704711 ~2011
187211079593744221591911 ~2011
187225836833744516736711 ~2011
1872291653914978333231312 ~2013
187241180513744823610311 ~2011
187248984593744979691911 ~2011
Home
4.933.056 digits
e-mail
25-07-20