Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
271406662915428133258311 ~2012
2714165830116284994980712 ~2014
271429564795428591295911 ~2012
271448805835428976116711 ~2012
271457253715429145074311 ~2012
271459138435429182768711 ~2012
2714827242116288963452712 ~2014
271489587235429791744711 ~2012
271525747915430514958311 ~2012
2715281755716291690534312 ~2014
271530180715430603614311 ~2012
2715461230116292767380712 ~2014
271548684835430973696711 ~2012
271551930012260...92632715 2023
271572785035431455700711 ~2012
271573735915431474718311 ~2012
2715899269121727194152912 ~2014
271600658995432013179911 ~2012
2716016770721728134165712 ~2014
271607767195432155343911 ~2012
271615090315432301806311 ~2012
271638346795432766935911 ~2012
2716403012921731224103312 ~2014
271642669315432853386311 ~2012
2716450680116298704080712 ~2014
Exponent Prime Factor Dig. Year
271650655795433013115911 ~2012
2716795548727167955487112 ~2014
271680606595433612131911 ~2012
271688740915433774818311 ~2012
271699087195433981743911 ~2012
2717133523738039869331912 ~2015
271728768595434575371911 ~2012
271748274835434965496711 ~2012
271756047835435120956711 ~2012
271777910515435558210311 ~2012
271778020315435560406311 ~2012
271780814995435616299911 ~2012
2717849370116307096220712 ~2014
271791660115435833202311 ~2012
2717951409143487222545712 ~2015
2718086727127180867271112 ~2014
2718150877121745207016912 ~2014
2718197821121745582568912 ~2014
2718367317716310203906312 ~2014
271838658835436773176711 ~2013
271844967115436899342311 ~2013
2718561717716311370306312 ~2014
2718574480121748595840912 ~2014
271863889795437277795911 ~2013
271867895279335...23571914 2023
Exponent Prime Factor Dig. Year
271890146035437802920711 ~2013
2718924679316313548075912 ~2014
2719181503121753452024912 ~2014
2719269295343508308724912 ~2015
271930389235438607784711 ~2013
271930861315438617226311 ~2013
271932154315438643086311 ~2013
271938611515438772230311 ~2013
271940695435438813908711 ~2013
271961866915439237338311 ~2013
271979861995439597239911 ~2013
271981504315439630086311 ~2013
271986933115439738662311 ~2013
2719893352721759146821712 ~2014
271997329915439946598311 ~2013
2719973916748959530500712 ~2015
272006124235440122484711 ~2013
272017225435440344508711 ~2013
272029716835440594336711 ~2013
272031080635440621612711 ~2013
2720366882921762935063312 ~2014
272037041635440740832711 ~2013
2720388725316322332351912 ~2014
272039947315440798946311 ~2013
272048306515440966130311 ~2013
Exponent Prime Factor Dig. Year
272054464915441089298311 ~2013
272062553395441251067911 ~2013
2720655793316323934759912 ~2014
272078112595441562251911 ~2013
2720924097743534785563312 ~2015
272097573835441951476711 ~2013
272097929035441958580711 ~2013
2720986478938093810704712 ~2015
272120732995442414659911 ~2013
272123451835442469036711 ~2013
2721329593716327977562312 ~2014
272138823235442776464711 ~2013
272162607835443252156711 ~2013
272169641635443392832711 ~2013
272172243715443444874311 ~2013
272191951195443839023911 ~2013
272199753835443995076711 ~2013
272199820195443996403911 ~2013
272201886595444037731911 ~2013
272203961635444079232711 ~2013
272210641315444212826311 ~2013
272214547915444290958311 ~2013
2722200072116333200432712 ~2014
272239081435444781628711 ~2013
2722612817921780902543312 ~2014
Home
4.828.532 digits
e-mail
25-06-01