Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
474392480639487849612711 ~2014
4744230653366419229146312 ~2016
474427656599488553131911 ~2014
4744437612128466625672712 ~2016
474453126119489062522311 ~2014
474485744039489714880711 ~2014
474535394399490707887911 ~2014
474544811639490896232711 ~2014
474573893519491477870311 ~2014
474581650919491633018311 ~2014
4745819455728474916734312 ~2016
474617719799492354395911 ~2014
474641167439492823348711 ~2014
474643896839492877936711 ~2014
474651443999493028879911 ~2014
474655690319493113806311 ~2014
4747336224128484017344712 ~2016
474733660919494673218311 ~2014
474738473399494769467911 ~2014
474777985319495559706311 ~2014
474781861919495637238311 ~2014
474832538999496650779911 ~2014
474867298199497345963911 ~2014
474867948719497358974311 ~2014
4748731283937989850271312 ~2016
Exponent Prime Factor Dig. Year
474876813839497536276711 ~2014
474880086719497601734311 ~2014
474895076519497901530311 ~2014
4749529411737996235293712 ~2016
4749693934128498163604712 ~2016
474971344919499426898311 ~2014
475041004439500820088711 ~2014
4750902558128505415348712 ~2016
475102441919502048838311 ~2014
475117609319502352186311 ~2014
475134467039502689340711 ~2014
475144249319502884986311 ~2014
475157170199503143403911 ~2014
4751769804776028316875312 ~2017
475204379639504087592711 ~2014
475205029439504100588711 ~2014
4752075301138016602408912 ~2016
475241833799504836675911 ~2014
4752763891328516583347912 ~2016
4753343712128520062272712 ~2016
475334399399506687987911 ~2014
475353622799507072455911 ~2014
475382735519507654710311 ~2014
475391091719507821834311 ~2014
4754003849328524023095912 ~2016
Exponent Prime Factor Dig. Year
475404983639508099672711 ~2014
475405852199508117043911 ~2014
475422939239508458784711 ~2014
4755824915938046599327312 ~2016
475585368599511707371911 ~2014
475629625919512592518311 ~2014
475641974639512839492711 ~2014
475671422639513428452711 ~2014
475675343519513506870311 ~2014
475677984239513559684711 ~2014
475686797519513735950311 ~2014
475736286599514725731911 ~2014
475737732839514754656711 ~2014
4757452885328544717311912 ~2016
475745930639514918612711 ~2014
475797539399515950787911 ~2014
475807534319516150686311 ~2014
475841461199516829223911 ~2014
475846339319516926786311 ~2014
4759266681728555600090312 ~2016
476014831799520296635911 ~2014
476030036399520600727911 ~2014
476037267719520745354311 ~2014
476052994319521059886311 ~2014
4760686898938085495191312 ~2016
Exponent Prime Factor Dig. Year
4761167499776178679995312 ~2017
476135780039522715600711 ~2014
476162044319523240886311 ~2014
476175616199523512323911 ~2014
476181880319523637606311 ~2014
476213433839524268676711 ~2014
476215195319524303906311 ~2014
476219385839524387716711 ~2014
4762373104128574238624712 ~2016
476291279399525825587911 ~2014
4763017468738104139749712 ~2016
476323513799526470275911 ~2014
476325132239526502644711 ~2014
476327806199526556123911 ~2014
476373066839527461336711 ~2014
476390833799527816675911 ~2014
476412626999528252539911 ~2014
4764289927738114319421712 ~2016
4764388149728586328898312 ~2016
476440536239528810724711 ~2014
476442661799528853235911 ~2014
476461210919529224218311 ~2014
4764702247738117617981712 ~2016
476475299039529505980711 ~2014
476485380119529707602311 ~2014
Home
4.724.182 digits
e-mail
25-04-13