Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
6083770069112167540138312 ~2015
6083894693912167789387912 ~2015
6083995067912167990135912 ~2015
6084010625912168021251912 ~2015
6084404921912168809843912 ~2015
6084838285112169676570312 ~2015
6085047637748680381101712 ~2017
6085409309912170818619912 ~2015
6085945921112171891842312 ~2015
6086535133112173070266312 ~2015
6086987342312173974684712 ~2015
6087052976312174105952712 ~2015
6087803119112175606238312 ~2015
6087814155736526884934312 ~2016
6087870811736527224870312 ~2016
6088098829736528592978312 ~2016
6088131553112176263106312 ~2015
6088138037912176276075912 ~2015
6088185997112176371994312 ~2015
6088709124760887091247112 ~2017
6088860634136533163804712 ~2016
6089046457112178092914312 ~2015
6089795948312179591896712 ~2015
6090002033912180004067912 ~2015
6090422795912180845591912 ~2015
Exponent Prime Factor Dig. Year
6090749912312181499824712 ~2015
6091638800312183277600712 ~2015
6091639975112183279950312 ~2015
6091776733112183553466312 ~2015
6092166825736553000954312 ~2016
6092358355112184716710312 ~2015
6092374829912184749659912 ~2015
6092706025112185412050312 ~2015
609286199331758...12663915 2024
6092972321912185944643912 ~2015
6093080429912186160859912 ~2015
6094381592312188763184712 ~2015
6094542481112189084962312 ~2015
6094878766136569272596712 ~2016
6094927399112189854798312 ~2015
6095233579112190467158312 ~2015
6096159229112192318458312 ~2015
6096744989912193489979912 ~2015
6096750223112193500446312 ~2015
6096906398312193812796712 ~2015
609692904973017...96015115 2023
6097108021736582648130312 ~2016
6097354040312194708080712 ~2015
6097544221112195088442312 ~2015
6097607845112195215690312 ~2015
Exponent Prime Factor Dig. Year
6098593684136591562104712 ~2016
609860432413646...85811914 2023
6099205433912198410867912 ~2015
6099342371912198684743912 ~2015
6099404143112198808286312 ~2015
6099588593948796708751312 ~2017
6099812360312199624720712 ~2015
6099944300312199888600712 ~2015
6100037492312200074984712 ~2015
610043559671525...99175114 2024
6100655005112201310010312 ~2015
6100995911912201991823912 ~2015
6101076871112202153742312 ~2015
6101262800312202525600712 ~2015
6101287019912202574039912 ~2015
6101612993912203225987912 ~2015
6102099554312204199108712 ~2015
6102606287912205212575912 ~2015
6102720385112205440770312 ~2015
6102804836312205609672712 ~2015
6103124816312206249632712 ~2015
6103176433112206352866312 ~2015
6103264717112206529434312 ~2015
6104041681336624250087912 ~2016
6104190575912208381151912 ~2015
Exponent Prime Factor Dig. Year
6104414659336626487955912 ~2016
6104745740312209491480712 ~2015
6104781649112209563298312 ~2015
6104977790312209955580712 ~2015
6105099023912210198047912 ~2015
6105317455112210634910312 ~2015
6105631189112211262378312 ~2015
6106146557912212293115912 ~2015
6106402634312212805268712 ~2015
6106509127112213018254312 ~2015
6107319751112214639502312 ~2015
6107504503736645027022312 ~2016
6107507155736645042934312 ~2016
6108370253912216740507912 ~2015
6108637996148869103968912 ~2017
6108921181112217842362312 ~2015
610896850091871...86757715 2023
6109779035912219558071912 ~2015
6110009165912220018331912 ~2015
6110063965112220127930312 ~2015
6110375341112220750682312 ~2015
6110920585112221841170312 ~2015
6111009150136666054900712 ~2016
6111050912312222101824712 ~2015
6111861259112223722518312 ~2015
Home
4.724.182 digits
e-mail
25-04-13