Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
6423969481738543816890312 ~2017
6424015129112848030258312 ~2015
6424186291112848372582312 ~2015
642440254371888...47847914 2024
6424445119112848890238312 ~2015
6424564027338547384163912 ~2017
6424777237112849554474312 ~2015
6424913242138549479452712 ~2017
6425269661912850539323912 ~2015
642540533631503...48694314 2023
6425530859912851061719912 ~2015
6425599730312851199460712 ~2015
6425735261912851470523912 ~2015
6425737697912851475395912 ~2015
6426022015112852044030312 ~2015
6426063953912852127907912 ~2015
6426435565112852871130312 ~2015
6426492175112852984350312 ~2015
6427804506138566827036712 ~2017
6428489227112856978454312 ~2015
6428810747912857621495912 ~2015
6429441035912858882071912 ~2015
6429452396312858904792712 ~2015
6429569471912859138943912 ~2015
6430059239912860118479912 ~2015
Exponent Prime Factor Dig. Year
6430751620138584509720712 ~2017
6430837295912861674591912 ~2015
6431143285112862286570312 ~2015
6431339987912862679975912 ~2015
6431823509912863647019912 ~2015
6431973668312863947336712 ~2015
6432841496312865682992712 ~2015
6432966637112865933274312 ~2015
6433069565912866139131912 ~2015
6433907810312867815620712 ~2015
6434233903112868467806312 ~2015
6434378303338606269819912 ~2017
6434596043912869192087912 ~2015
6434596307912869192615912 ~2015
6434927843912869855687912 ~2015
6435032060312870064120712 ~2015
6435273793112870547586312 ~2015
6436162240138616973440712 ~2017
6436424267338618545603912 ~2017
6436540259912873080519912 ~2015
6436706069951493648559312 ~2017
6437789197338626735183912 ~2017
6438036896312876073792712 ~2015
6438099823738628598942312 ~2017
6438341347751506730781712 ~2017
Exponent Prime Factor Dig. Year
6438359930312876719860712 ~2015
6438370253338630221519912 ~2017
643919089693541...93295114 2024
6439301209112878602418312 ~2015
6440078191112880156382312 ~2015
6440140553912880281107912 ~2015
6440422793912880845587912 ~2015
6440442203912880884407912 ~2015
6440580912138643485472712 ~2017
6441961564751535692517712 ~2017
6442680787112885361574312 ~2015
6442770377912885540755912 ~2015
6443262116312886524232712 ~2015
6443693017112887386034312 ~2015
6443719325912887438651912 ~2015
6443866067951550928543312 ~2017
6443893046312887786092712 ~2015
6444293557338665761343912 ~2017
6444678908312889357816712 ~2015
6444875597912889751195912 ~2015
6445178295164451782951112 ~2017
6445181600312890363200712 ~2015
6445203181112890406362312 ~2015
6445345811912890691623912 ~2015
6445378547912890757095912 ~2015
Exponent Prime Factor Dig. Year
6445733073738674398442312 ~2017
6445808777912891617555912 ~2015
6445819871912891639743912 ~2015
6445886840312891773680712 ~2015
6446401115912892802231912 ~2015
6446574053912893148107912 ~2015
6446953023164469530231112 ~2017
6447779731112895559462312 ~2015
6448125449912896250899912 ~2015
6448422779912896845559912 ~2015
6448519657112897039314312 ~2015
6448930069112897860138312 ~2015
6449172346751593378773712 ~2017
6449433842312898867684712 ~2015
6449487213164494872131112 ~2017
6449760973338698565839912 ~2017
6449997427112899994854312 ~2015
6450471812312900943624712 ~2015
6450981415112901962830312 ~2015
6451416984764514169847112 ~2017
6451931200138711587200712 ~2017
6453292724312906585448712 ~2015
6453531611912907063223912 ~2015
6453580672364535806723112 ~2017
6454058606312908117212712 ~2015
Home
4.724.182 digits
e-mail
25-04-13