Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
6545394517113090789034312 ~2015
6545851057113091702114312 ~2015
6546421638139278529828712 ~2017
6546705607113093411214312 ~2015
6547062565113094125130312 ~2015
6547349255913094698511912 ~2015
6547795304313095590608712 ~2015
6548610349113097220698312 ~2015
6549506593113099013186312 ~2015
6549802543113099605086312 ~2015
6549942907113099885814312 ~2015
6550181450313100362900712 ~2015
6550234721913100469443912 ~2015
6550784754139304708524712 ~2017
6550902740313101805480712 ~2015
6551224783113102449566312 ~2015
6551536916313103073832712 ~2015
6552057537739312345226312 ~2017
6552140069913104280139912 ~2015
6552799831113105599662312 ~2015
6552943715913105887431912 ~2015
6553031207913106062415912 ~2015
6553088953113106177906312 ~2015
6553161343113106322686312 ~2015
6554075681913108151363912 ~2015
Exponent Prime Factor Dig. Year
6554765975913109531951912 ~2015
6554870486313109740972712 ~2015
6555124958313110249916712 ~2015
6555768595113111537190312 ~2015
6556067131113112134262312 ~2015
6556667156313113334312712 ~2015
6556919486313113838972712 ~2015
6557023813113114047626312 ~2015
6557213293739343279762312 ~2017
6557280281913114560563912 ~2015
6557981166765579811667112 ~2017
6558192845913116385691912 ~2015
6558324656313116649312712 ~2015
6558347461113116694922312 ~2015
6558391424313116782848712 ~2015
6558423932313116847864712 ~2015
6558663932313117327864712 ~2015
6559117993113118235986312 ~2015
655929182774512...77457714 2023
655947901611042...35599115 2025
6559592801913119185603912 ~2015
6560061050313120122100712 ~2015
6560328961113120657922312 ~2015
6561582254313123164508712 ~2015
6561665693913123331387912 ~2015
Exponent Prime Factor Dig. Year
6561724476139370346856712 ~2017
6562560697113125121394312 ~2015
6562792459113125584918312 ~2015
6563125571913126251143912 ~2015
6563163497913126326995912 ~2015
6563163745113126327490312 ~2015
6563238865152505910920912 ~2017
6564444097113128888194312 ~2015
6564589088313129178176712 ~2015
6564628117113129256234312 ~2015
6564949789113129899578312 ~2015
6565525111113131050222312 ~2015
6565925552313131851104712 ~2015
6566280907113132561814312 ~2015
6566477581113132955162312 ~2015
6566529781113133059562312 ~2015
6567167755152537342040912 ~2017
6567220011739403320070312 ~2017
6567315151339403890907912 ~2017
6567672529339406035175912 ~2017
6568105927113136211854312 ~2015
6568299983913136599967912 ~2015
6568310878139409865268712 ~2017
6568686674313137373348712 ~2015
6569004733113138009466312 ~2015
Exponent Prime Factor Dig. Year
6569021426313138042852712 ~2015
6569144018313138288036712 ~2015
6569188925952553511407312 ~2017
6569232545913138465091912 ~2015
6569304413913138608827912 ~2015
6569482109913138964219912 ~2015
6569945543913139891087912 ~2015
6570134899113140269798312 ~2015
6570400448952563203591312 ~2017
6570817055339424902331912 ~2017
6571175930313142351860712 ~2015
6571577441913143154883912 ~2015
6571677013113143354026312 ~2015
6572423063913144846127912 ~2015
6572526615165725266151112 ~2017
6572603287113145206574312 ~2015
6572880133113145760266312 ~2015
6573526451913147052903912 ~2015
6573530327913147060655912 ~2015
6573534757113147069514312 ~2015
6573618482313147236964712 ~2015
6573986905339443921431912 ~2017
6574222145913148444291912 ~2015
6574446293913148892587912 ~2015
6574647122313149294244712 ~2015
Home
4.724.182 digits
e-mail
25-04-13