Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
660016174392534...09657714 2025
6600457448313200914896712 ~2016
6600584605113201169210312 ~2016
6601270460313202540920712 ~2016
6602080486752816643893712 ~2017
6602428436313204856872712 ~2016
6602430505113204861010312 ~2016
6603142946313206285892712 ~2016
6603828638313207657276712 ~2016
6604435131166044351311112 ~2017
6604648507739627891046312 ~2017
6604726373913209452747912 ~2016
6606169777113212339554312 ~2016
6606534631113213069262312 ~2016
6606715760952853726087312 ~2017
6606719845113213439690312 ~2016
6606964417113213928834312 ~2016
6607127753913214255507912 ~2016
6607341450139644048700712 ~2017
6607434730366074347303112 ~2017
6608501735913217003471912 ~2016
6608550851913217101703912 ~2016
6608879243913217758487912 ~2016
6609323005113218646010312 ~2016
6609667118313219334236712 ~2016
Exponent Prime Factor Dig. Year
6610832912313221665824712 ~2016
6610857110313221714220712 ~2016
6611241848313222483696712 ~2016
6611377349913222754699912 ~2016
6611433599913222867199912 ~2016
6611784361113223568722312 ~2016
6612355136313224710272712 ~2016
6612398211739674389270312 ~2017
6612625169913225250339912 ~2016
6612732485913225464971912 ~2016
6613476517113226953034312 ~2016
6613519879113227039758312 ~2016
6613534829913227069659912 ~2016
6613901503113227803006312 ~2016
6613997863113227995726312 ~2016
6615434851113230869702312 ~2016
6615522455913231044911912 ~2016
6615607705113231215410312 ~2016
6615871861113231743722312 ~2016
6616088069913232176139912 ~2016
6616136048313232272096712 ~2016
6616210957113232421914312 ~2016
6616248672139697492032712 ~2017
6616296941913232593883912 ~2016
6616798169913233596339912 ~2016
Exponent Prime Factor Dig. Year
6616983211152935865688912 ~2017
6617084053113234168106312 ~2016
6617099714313234199428712 ~2016
6618188759913236377519912 ~2016
6618426181739710557090312 ~2017
6618433502313236867004712 ~2016
6618827663913237655327912 ~2016
6619010834313238021668712 ~2016
6619061623113238123246312 ~2016
6619280008139715680048712 ~2017
6619300525113238601050312 ~2016
6619345190313238690380712 ~2016
6619737923913239475847912 ~2016
6620101616313240203232712 ~2016
6620748947913241497895912 ~2016
6620751667113241503334312 ~2016
6620895524313241791048712 ~2016
6621027998313242055996712 ~2016
6621041072313242082144712 ~2016
6621062093913242124187912 ~2016
6621140077113242280154312 ~2016
6621204853113242409706312 ~2016
6622021653739732129922312 ~2017
6622200803339733204819912 ~2017
6622303550313244607100712 ~2016
Exponent Prime Factor Dig. Year
6622603641166226036411112 ~2017
6622892432313245784864712 ~2016
6623604779913247209559912 ~2016
6623699132313247398264712 ~2016
6623850037113247700074312 ~2016
6623882948313247765896712 ~2016
6624106255113248212510312 ~2016
6624490111113248980222312 ~2016
6624541976313249083952712 ~2016
662475301372424...03014314 2023
6624874721913249749443912 ~2016
6625059629913250119259912 ~2016
6625122545913250245091912 ~2016
6625124495913250248991912 ~2016
6625206007113250412014312 ~2016
6625434707913250869415912 ~2016
6625443739113250887478312 ~2016
6626336070139758016420712 ~2017
6626740984366267409843112 ~2017
6627011984953016095879312 ~2017
6627114193339762685159912 ~2017
6627146006313254292012712 ~2016
6627150503913254301007912 ~2016
6627245357953017962863312 ~2017
6627389767153019118136912 ~2017
Home
4.724.182 digits
e-mail
25-04-13