Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
6784010537913568021075912 ~2016
6784282651113568565302312 ~2016
6784849729113569699458312 ~2016
6784926605913569853211912 ~2016
678518771273704...91134314 2024
6785392081113570784162312 ~2016
678565257432388...06153714 2024
6785941703340715650219912 ~2017
6786275162313572550324712 ~2016
6786853397913573706795912 ~2016
6787452697113574905394312 ~2016
6787949978313575899956712 ~2016
6788140877913576281755912 ~2016
6788146838313576293676712 ~2016
6788920933113577841866312 ~2016
6789251005113578502010312 ~2016
6789676982313579353964712 ~2016
6790293901113580587802312 ~2016
6790359185913580718371912 ~2016
6790563991113581127982312 ~2016
6790653746954325229975312 ~2017
6790768195113581536390312 ~2016
6791439231740748635390312 ~2017
6791535205113583070410312 ~2016
6792249205113584498410312 ~2016
Exponent Prime Factor Dig. Year
6792619592313585239184712 ~2016
679358185973192...74059114 2024
6793632253340761793519912 ~2017
6793921888154351375104912 ~2017
6794066038754352528309712 ~2017
6794375396313588750792712 ~2016
6794413241913588826483912 ~2016
6794432749113588865498312 ~2016
6794714054313589428108712 ~2016
6795027059913590054119912 ~2016
6795108991113590217982312 ~2016
6795268553913590537107912 ~2016
6795758651913591517303912 ~2016
6795938245113591876490312 ~2016
6796119821913592239643912 ~2016
6796668234140780009404712 ~2017
6796800619113593601238312 ~2016
6796993631913593987263912 ~2016
6797184745113594369490312 ~2016
6797372801913594745603912 ~2016
6797736541113595473082312 ~2016
6798302626154386421008912 ~2017
6798359813913596719627912 ~2016
6798659945913597319891912 ~2016
6798853823913597707647912 ~2016
Exponent Prime Factor Dig. Year
6798937996367989379963112 ~2017
6799070783913598141567912 ~2016
6799234643954393877151312 ~2017
6799288980767992889807112 ~2017
6799372394313598744788712 ~2016
6799495687340796974123912 ~2017
6799597579113599195158312 ~2016
6799788809913599577619912 ~2016
6800203532313600407064712 ~2016
6800418040154403344320912 ~2017
6800957364768009573647112 ~2017
6801154741154409237928912 ~2017
6801223655913602447311912 ~2016
6801391111113602782222312 ~2016
6801521028768015210287112 ~2017
6801530744313603061488712 ~2016
6801684953913603369907912 ~2016
6801814762368018147623112 ~2017
6801868079913603736159912 ~2016
6801918019154415344152912 ~2017
6802276325340813657951912 ~2017
6802392341913604784683912 ~2016
6802449063740814694382312 ~2017
6802927196313605854392712 ~2016
6803359439913606718879912 ~2016
Exponent Prime Factor Dig. Year
6803712502140822275012712 ~2017
6803948883168039488831112 ~2017
6804205009113608410018312 ~2016
6804224455113608448910312 ~2016
6804635948313609271896712 ~2016
6804833936313609667872712 ~2016
6804840301113609680602312 ~2016
6804984373113609968746312 ~2016
6805195169913610390339912 ~2016
6806026549113612053098312 ~2016
6806299364313612598728712 ~2016
6806548127913613096255912 ~2016
6806571485913613142971912 ~2016
6806612438313613224876712 ~2016
6806699226140840195356712 ~2017
6806745639740840473838312 ~2017
6807281492313614562984712 ~2016
6807550660154460405280912 ~2017
6807619783113615239566312 ~2016
6808238347113616476694312 ~2016
6808736473113617472946312 ~2016
6809334521913618669043912 ~2016
6810051014313620102028712 ~2016
6810740942313621481884712 ~2016
6811300060154490400480912 ~2017
Home
4.724.182 digits
e-mail
25-04-13