Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
7389390079114778780158312 ~2016
7389596737114779193474312 ~2016
7390037249914780074499912 ~2016
7390125968314780251936712 ~2016
7390543987114781087974312 ~2016
7390976363344345858179912 ~2017
7392066803914784133607912 ~2016
7392541015114785082030312 ~2016
7393009525159144076200912 ~2017
7393160189914786320379912 ~2016
7393355593114786711186312 ~2016
739393455372469...40935914 2023
7394006881744364041290312 ~2017
7394843251344369059507912 ~2017
7395166171114790332342312 ~2016
7395498577114790997154312 ~2016
7396005697744376034186312 ~2017
7396561397914793122795912 ~2016
7396832924314793665848712 ~2016
7397202947914794405895912 ~2016
7397424116314794848232712 ~2016
7397645957344385875743912 ~2017
7397919161914795838323912 ~2016
7398731180314797462360712 ~2016
7398823249114797646498312 ~2016
Exponent Prime Factor Dig. Year
7399150399114798300798312 ~2016
7399350293914798700587912 ~2016
7399362224314798724448712 ~2016
7399601063914799202127912 ~2016
7399653269914799306539912 ~2016
7400025386314800050772712 ~2016
7400211032314800422064712 ~2016
7400348859744402093158312 ~2017
7401302453914802604907912 ~2016
7401319839744407919038312 ~2017
7401529267114803058534312 ~2016
740311357571539...23745714 2024
7404285283974042852839112 ~2018
7404314684314808629368712 ~2016
7404338552314808677104712 ~2016
7405041375174050413751112 ~2018
7405220101114810440202312 ~2016
7405761861744434571170312 ~2017
7406280547744437683286312 ~2017
7407482972314814965944712 ~2016
7407913297114815826594312 ~2016
7408515281914817030563912 ~2016
7408745816959269966535312 ~2017
7409651546314819303092712 ~2016
7409860678159278885424912 ~2017
Exponent Prime Factor Dig. Year
7410139765114820279530312 ~2016
7410171973759281375789712 ~2017
7410337313914820674627912 ~2016
7410420428314820840856712 ~2016
7410539859744463239158312 ~2017
7410632221114821264442312 ~2016
7410945091114821890182312 ~2016
7411051076314822102152712 ~2016
7411718441914823436883912 ~2016
7411981291114823962582312 ~2016
7412302019914824604039912 ~2016
7412308511914824617023912 ~2016
7412424431914824848863912 ~2016
7412499779914824999559912 ~2016
7412527451914825054903912 ~2016
7413024445114826048890312 ~2016
7413627767914827255535912 ~2016
7413765662314827531324712 ~2016
7413776438314827552876712 ~2016
7414090228144484541368712 ~2017
7414521757114829043514312 ~2016
7414759393114829518786312 ~2016
7416289253914832578507912 ~2016
7416555203914833110407912 ~2016
7416712867114833425734312 ~2016
Exponent Prime Factor Dig. Year
7418246233114836492466312 ~2016
7418343662314836687324712 ~2016
7418609041114837218082312 ~2016
7419343136314838686272712 ~2016
7419713497114839426994312 ~2016
7419775061914839550123912 ~2016
7420524697114841049394312 ~2016
7420613768314841227536712 ~2016
7420788859114841577718312 ~2016
7420954283344525725699912 ~2017
7421705580774217055807112 ~2018
7422180286759377442293712 ~2017
7422878005114845756010312 ~2016
7423655894314847311788712 ~2016
7423828772314847657544712 ~2016
7424419283914848838567912 ~2016
7425176294314850352588712 ~2016
7425194399914850388799912 ~2016
7425953037744555718226312 ~2017
7426153309114852306618312 ~2016
7426166032759409328261712 ~2017
7426521761914853043523912 ~2016
7426673749114853347498312 ~2016
7426858507344561151043912 ~2017
7426947491959415579935312 ~2017
Home
4.724.182 digits
e-mail
25-04-13