Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
15476968286330953936572712 ~2018
1548347035092601...18951314 2024
15486001847930972003695912 ~2018
15486508279130973016558312 ~2018
15488695123130977390246312 ~2018
15489168121130978336242312 ~2018
15490567514330981135028712 ~2018
15490824151130981648302312 ~2018
15492203756330984407512712 ~2018
15493692680330987385360712 ~2018
15493857355130987714710312 ~2018
15494535275930989070551912 ~2018
15496157300330992314600712 ~2018
15496207631930992415263912 ~2018
15497288192330994576384712 ~2018
15497916962330995833924712 ~2018
15498440983130996881966312 ~2018
15503550545931007101091912 ~2018
15503619122331007238244712 ~2018
15505741346331011482692712 ~2018
15507044471931014088943912 ~2018
15507540947931015081895912 ~2018
15507655067931015310135912 ~2018
15508530509931017061019912 ~2018
15510199825131020399650312 ~2018
Exponent Prime Factor Dig. Year
15510709199931021418399912 ~2018
15510793661931021587323912 ~2018
15511166561931022333123912 ~2018
15511660597131023321194312 ~2018
15511716599931023433199912 ~2018
15515178313131030356626312 ~2018
15515542609131031085218312 ~2018
15516455749131032911498312 ~2018
15517497973131034995946312 ~2018
15517672775931035345551912 ~2018
15518815645131037631290312 ~2018
15521385961131042771922312 ~2018
15522544783131045089566312 ~2018
15524205109131048410218312 ~2018
15525654649131051309298312 ~2018
15526537724331053075448712 ~2018
1552821503393260...57119114 2024
15528262931931056525863912 ~2018
15528317431131056634862312 ~2018
15530484965931060969931912 ~2018
15530698279131061396558312 ~2018
15533166493131066332986312 ~2018
15533835686331067671372712 ~2018
15535504556331071009112712 ~2018
15536174665131072349330312 ~2018
Exponent Prime Factor Dig. Year
15536349931131072699862312 ~2018
15537723509931075447019912 ~2018
15539914265931079828531912 ~2018
15541770746331083541492712 ~2018
15541776245931083552491912 ~2018
15541954346331083908692712 ~2018
15543476363931086952727912 ~2018
15544014247131088028494312 ~2018
1554408031431865...37716114 2024
1554551597872642...16379114 2025
15545723264331091446528712 ~2018
15548919917931097839835912 ~2018
15548952371931097904743912 ~2018
15550952851131101905702312 ~2018
15551021582331102043164712 ~2018
15552438565131104877130312 ~2018
15552686177931105372355912 ~2018
15553741819131107483638312 ~2018
15555083383131110166766312 ~2018
15558386101131116772202312 ~2018
15558393089931116786179912 ~2018
15562765133931125530267912 ~2018
15563068367931126136735912 ~2018
15563854547931127709095912 ~2018
15566691397131133382794312 ~2018
Exponent Prime Factor Dig. Year
1556762391016563...04981715 2023
1557028335235085...28611915 2024
15570398941131140797882312 ~2018
15570882205131141764410312 ~2018
15572069972331144139944712 ~2018
15572647634331145295268712 ~2018
15575839867131151679734312 ~2018
15577957985931155915971912 ~2018
15578545837131157091674312 ~2018
15583219766331166439532712 ~2018
15586514924331173029848712 ~2018
15586597538331173195076712 ~2018
15587134543131174269086312 ~2018
15587909407131175818814312 ~2018
15589020853131178041706312 ~2018
15589317233931178634467912 ~2018
15590522101131181044202312 ~2018
15591617335131183234670312 ~2018
15592497173931184994347912 ~2018
15593043404331186086808712 ~2018
15593735053131187470106312 ~2018
15594129601131188259202312 ~2018
15594503881131189007762312 ~2018
15596175973131192351946312 ~2018
15597664682331195329364712 ~2018
Home
4.724.182 digits
e-mail
25-04-13