Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
1620564047872852...24251314 2024
16205737934332411475868712 ~2019
16206433523932412867047912 ~2019
16210828358332421656716712 ~2019
16212796465132425592930312 ~2019
1621368202694539...67532114 2024
16218281267932436562535912 ~2019
16219073138332438146276712 ~2019
16220922031132441844062312 ~2019
16221241706332442483412712 ~2019
16222965589132445931178312 ~2019
16223318456332446636912712 ~2019
16223490131932446980263912 ~2019
16224712703932449425407912 ~2019
16225903556332451807112712 ~2019
16228804193932457608387912 ~2019
16230963505132461927010312 ~2019
16239791861932479583723912 ~2019
16240081232332480162464712 ~2019
16242069919132484139838312 ~2019
16242168929932484337859912 ~2019
16243465153132486930306312 ~2019
16244170979932488341959912 ~2019
16244846045932489692091912 ~2019
16245334880332490669760712 ~2019
Exponent Prime Factor Dig. Year
16246162712332492325424712 ~2019
16246775131132493550262312 ~2019
16246984907932493969815912 ~2019
16247870207932495740415912 ~2019
16248392942332496785884712 ~2019
16248447626332496895252712 ~2019
1624906251311286...10375315 2025
16250207534332500415068712 ~2019
16251366703132502733406312 ~2019
16252300703932504601407912 ~2019
16253643083932507286167912 ~2019
16254934513132509869026312 ~2019
16255637267932511274535912 ~2019
16257495073132514990146312 ~2019
16262004823132524009646312 ~2019
16262198765932524397531912 ~2019
16262720792332525441584712 ~2019
16263375659932526751319912 ~2019
16265032651132530065302312 ~2019
16265107178332530214356712 ~2019
16265329946332530659892712 ~2019
16266310319932532620639912 ~2019
16266805370332533610740712 ~2019
16267231955932534463911912 ~2019
16269576281932539152563912 ~2019
Exponent Prime Factor Dig. Year
16273790813932547581627912 ~2019
16274879671132549759342312 ~2019
16275080921932550161843912 ~2019
16275594055132551188110312 ~2019
16278655283932557310567912 ~2019
16280524832332561049664712 ~2019
16280966323132561932646312 ~2019
16281046039132562092078312 ~2019
16282024067932564048135912 ~2019
16282568917132565137834312 ~2019
16283575069132567150138312 ~2019
16284115931932568231863912 ~2019
16284602279932569204559912 ~2019
16285069775932570139551912 ~2019
1628607966115237...60298316 2025
16286965229932573930459912 ~2019
16287048953932574097907912 ~2019
16287381062332574762124712 ~2019
16291175996332582351992712 ~2019
16292250266332584500532712 ~2019
16293419264332586838528712 ~2019
16294141541932588283083912 ~2019
16294953257932589906515912 ~2019
16296687187132593374374312 ~2019
16297620121132595240242312 ~2019
Exponent Prime Factor Dig. Year
16298974265932597948531912 ~2019
16299442766332598885532712 ~2019
16300532317132601064634312 ~2019
16301372953132602745906312 ~2019
16301486693932602973387912 ~2019
16304836244332609672488712 ~2019
16305171152332610342304712 ~2019
16306026223132612052446312 ~2019
16307519036332615038072712 ~2019
16307673403132615346806312 ~2019
16307975731132615951462312 ~2019
16308254540332616509080712 ~2019
16308421855132616843710312 ~2019
16308423865132616847730312 ~2019
16308689624332617379248712 ~2019
16310008729132620017458312 ~2019
16311443345932622886691912 ~2019
16312077073132624154146312 ~2019
1631274446591435...12999314 2024
16313854985932627709971912 ~2019
16314102848332628205696712 ~2019
16314829982332629659964712 ~2019
16315284769132630569538312 ~2019
16317774926332635549852712 ~2019
16318123283932636246567912 ~2019
Home
4.724.182 digits
e-mail
25-04-13