Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
16425754472332851508944712 ~2019
16425775070332851550140712 ~2019
16426324736332852649472712 ~2019
16428409643932856819287912 ~2019
16431870025132863740050312 ~2019
16432759351132865518702312 ~2019
16432871624332865743248712 ~2019
16435382240332870764480712 ~2019
1643595779532859...56382314 2024
16439607407932879214815912 ~2019
16440446945932880893891912 ~2019
16440717374332881434748712 ~2019
16443157793932886315587912 ~2019
16443321938332886643876712 ~2019
1644476617316216...13431914 2023
16445749778332891499556712 ~2019
16446038702332892077404712 ~2019
16446784477132893568954312 ~2019
16448592397132897184794312 ~2019
16449844976332899689952712 ~2019
16450237399132900474798312 ~2019
16450742666332901485332712 ~2019
16451216125132902432250312 ~2019
16452113234332904226468712 ~2019
16452402049132904804098312 ~2019
Exponent Prime Factor Dig. Year
16453356515932906713031912 ~2019
16455445801132910891602312 ~2019
16456115383132912230766312 ~2019
16457355623932914711247912 ~2019
16458145880332916291760712 ~2019
16459836800332919673600712 ~2019
16461759506332923519012712 ~2019
1646210995671886...10378315 2025
16462533731932925067463912 ~2019
16463698705132927397410312 ~2019
16463721667132927443334312 ~2019
16464755378332929510756712 ~2019
16465570463932931140927912 ~2019
16466112025132932224050312 ~2019
16468073377132936146754312 ~2019
16468405256332936810512712 ~2019
16468526957932937053915912 ~2019
16468682593132937365186312 ~2019
16468983145132937966290312 ~2019
16469531015932939062031912 ~2019
16471180463932942360927912 ~2019
16472776277932945552555912 ~2019
16473196748332946393496712 ~2019
16474413761932948827523912 ~2019
16474562771932949125543912 ~2019
Exponent Prime Factor Dig. Year
16475054981932950109963912 ~2019
16475456905132950913810312 ~2019
1647555417893295...35780114 2024
1647581717693690...47625714 2023
16475956139932951912279912 ~2019
16476208111132952416222312 ~2019
16477508957932955017915912 ~2019
16480770818332961541636712 ~2019
16480949342332961898684712 ~2019
16482548543932965097087912 ~2019
1648455037614978...13582314 2024
16485473495932970946991912 ~2019
16485757153132971514306312 ~2019
1648694457735110...18963114 2023
1648749692573792...92911114 2024
16487932718332975865436712 ~2019
16488935348332977870696712 ~2019
16491266083132982532166312 ~2019
16491768197932983536395912 ~2019
16495916069932991832139912 ~2019
16496459771932992919543912 ~2019
16497484916332994969832712 ~2019
16497660397132995320794312 ~2019
16498321157932996642315912 ~2019
16498742972332997485944712 ~2019
Exponent Prime Factor Dig. Year
16499726669932999453339912 ~2019
16500224318333000448636712 ~2019
16500412417133000824834312 ~2019
16505104825133010209650312 ~2019
16505177894333010355788712 ~2019
16506793997933013587995912 ~2019
16507189892333014379784712 ~2019
16507555835933015111671912 ~2019
16508116289933016232579912 ~2019
16509216404333018432808712 ~2019
16510704925133021409850312 ~2019
16511474606333022949212712 ~2019
1651190867532873...09502314 2024
1651297998672774...37765714 2024
16513314355133026628710312 ~2019
16515294182333030588364712 ~2019
16515410417933030820835912 ~2019
1651542280872774...31861714 2024
16515675259133031350518312 ~2019
16516219021133032438042312 ~2019
16517591108333035182216712 ~2019
16518473228333036946456712 ~2019
16519122085133038244170312 ~2019
16519423549133038847098312 ~2019
16519571269133039142538312 ~2019
Home
4.724.182 digits
e-mail
25-04-13