Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
18379299133136758598266312 ~2019
18379878913136759757826312 ~2019
18380146289936760292579912 ~2019
18380189353136760378706312 ~2019
18380806064336761612128712 ~2019
1838314269132757...03695114 2024
18384613153136769226306312 ~2019
18384726125936769452251912 ~2019
18386072198336772144396712 ~2019
18389623867136779247734312 ~2019
18389845597136779691194312 ~2019
18390191519936780383039912 ~2019
18390196291136780392582312 ~2019
1839067006091070...75443915 2025
18391835335136783670670312 ~2019
18392960828336785921656712 ~2019
1839317925712979...39650314 2024
18393364745936786729491912 ~2019
18394290877136788581754312 ~2019
18395416039136790832078312 ~2019
18396131360336792262720712 ~2019
18396163807136792327614312 ~2019
18400392857936800785715912 ~2019
18401595017936803190035912 ~2019
18404016185936808032371912 ~2019
Exponent Prime Factor Dig. Year
18406126633136812253266312 ~2019
18407614909136815229818312 ~2019
18411076136336822152272712 ~2019
18411687505136823375010312 ~2019
18412553033936825106067912 ~2019
18419014471136838028942312 ~2019
1842027157013352...25758314 2025
18422590513136845181026312 ~2019
18423582911936847165823912 ~2019
18424437419936848874839912 ~2019
1842497476092152...20731315 2025
18425641063136851282126312 ~2019
18427019936336854039872712 ~2019
18427368121136854736242312 ~2019
18429041083136858082166312 ~2019
18430265281136860530562312 ~2019
18431103323936862206647912 ~2019
18431127668336862255336712 ~2019
18431403320336862806640712 ~2019
1843332749991364...34992714 2024
18434089823936868179647912 ~2019
18435885617936871771235912 ~2019
18438551576336877103152712 ~2019
18439771217936879542435912 ~2019
18440649485936881298971912 ~2019
Exponent Prime Factor Dig. Year
18441916939136883833878312 ~2019
18442638833936885277667912 ~2019
18443380469936886760939912 ~2019
18444978125936889956251912 ~2019
18445823305136891646610312 ~2019
18448589240336897178480712 ~2019
1845273620693358...89655914 2024
18452971837136905943674312 ~2019
18461475445136922950890312 ~2019
18462177266336924354532712 ~2019
1846234909911122...52252915 2025
18463343522336926687044712 ~2019
18464549825936929099651912 ~2019
18464572988336929145976712 ~2019
18465467324336930934648712 ~2019
18465642728336931285456712 ~2019
18466558649936933117299912 ~2019
18468474098336936948196712 ~2019
18469102621136938205242312 ~2019
18471048128336942096256712 ~2019
18471699667136943399334312 ~2019
1847314941194640...22692915 2025
18473502575936947005151912 ~2019
1847357566632512...90616914 2024
1847553797411441...61979914 2024
Exponent Prime Factor Dig. Year
18477721616336955443232712 ~2019
18479120384336958240768712 ~2019
18479145481136958290962312 ~2019
18480599381936961198763912 ~2019
18481401155936962802311912 ~2019
18489443666336978887332712 ~2019
18490351808336980703616712 ~2019
18490680769136981361538312 ~2019
18491131849136982263698312 ~2019
18493050188336986100376712 ~2019
18493250053136986500106312 ~2019
18496699429136993398858312 ~2019
18499955750336999911500712 ~2019
1850014877873256...85051314 2024
18502467823137004935646312 ~2019
18504355807137008711614312 ~2019
18504971099937009942199912 ~2019
18505067558337010135116712 ~2019
1850677944533257...82372914 2024
18506993713137013987426312 ~2019
18508636447137017272894312 ~2019
18512281747137024563494312 ~2019
18513136045137026272090312 ~2019
18514924253937029848507912 ~2019
18515732588337031465176712 ~2019
Home
4.724.182 digits
e-mail
25-04-13