Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
13112979263926225958527912 ~2018
13113049100326226098200712 ~2018
1311375246733225...06955914 2024
13113754658326227509316712 ~2018
13113821822326227643644712 ~2018
1311396186612727...68148914 2024
13114109114326228218228712 ~2018
13114479290326228958580712 ~2018
13115842538326231685076712 ~2018
13116340055926232680111912 ~2018
13118952343378713714059912 ~2019
13121132203126242264406312 ~2018
13121380375126242760750312 ~2018
13122125165926244250331912 ~2018
13123350409126246700818312 ~2018
13123366445926246732891912 ~2018
13124058469778744350818312 ~2019
13124202577378745215463912 ~2019
1312429927733018...33779114 2024
13125575759926251151519912 ~2018
13126545053926253090107912 ~2018
13128462011926256924023912 ~2018
13128967589926257935179912 ~2018
13131239255926262478511912 ~2018
13131659894326263319788712 ~2018
Exponent Prime Factor Dig. Year
13132350871378794105227912 ~2019
13132641833926265283667912 ~2018
13134530395126269060790312 ~2018
13134594083926269188167912 ~2018
13135189537378811137223912 ~2019
13136277313126272554626312 ~2018
13136817511126273635022312 ~2018
13139320987378835925923912 ~2019
13140322439926280644879912 ~2018
13140380612326280761224712 ~2018
13141944470326283888940712 ~2018
13141986692326283973384712 ~2018
13142922893926285845787912 ~2018
13143103157926286206315912 ~2018
13143628115926287256231912 ~2018
13145501234326291002468712 ~2018
13145845967926291691935912 ~2018
13146144398326292288796712 ~2018
13148020139926296040279912 ~2018
13148550818326297101636712 ~2018
13148669732326297339464712 ~2018
13149254040178895524240712 ~2019
13150432043926300864087912 ~2018
13150926769126301853538312 ~2018
13151277240178907663440712 ~2019
Exponent Prime Factor Dig. Year
13151445560326302891120712 ~2018
13151668364326303336728712 ~2018
13151905915126303811830312 ~2018
13152061511926304123023912 ~2018
13153037407126306074814312 ~2018
13154161453126308322906312 ~2018
13155192439126310384878312 ~2018
13155290807926310581615912 ~2018
13157136251926314272503912 ~2018
13157343896326314687792712 ~2018
13157742079126315484158312 ~2018
13157743561126315487122312 ~2018
13158588585778951531514312 ~2019
13159329992326318659984712 ~2018
13159458073126318916146312 ~2018
13161315995926322631991912 ~2018
13162704635926325409271912 ~2018
13162832954326325665908712 ~2018
13163517182326327034364712 ~2018
13164444869378986669215912 ~2019
13164836205778989017234312 ~2019
13165445525926330891051912 ~2018
13165524272326331048544712 ~2018
13165929528178995577168712 ~2019
13169124209926338248419912 ~2018
Exponent Prime Factor Dig. Year
13169703912179018223472712 ~2019
13170012941926340025883912 ~2018
13170051302326340102604712 ~2018
13170874393126341748786312 ~2018
13171926515926343853031912 ~2018
13172247115126344494230312 ~2018
13172868731926345737463912 ~2018
13172874464326345748928712 ~2018
13173357689926346715379912 ~2018
13174220165926348440331912 ~2018
13174594307926349188615912 ~2018
13174792025926349584051912 ~2018
13175410292326350820584712 ~2018
13176320704179057924224712 ~2019
13177330748326354661496712 ~2018
13177581341926355162683912 ~2018
13178235340179069412040712 ~2019
13178929236179073575416712 ~2019
13179794534326359589068712 ~2018
13180604779779083628678312 ~2019
13180912481926361824963912 ~2018
13184020032179104120192712 ~2019
13185226507379111359043912 ~2019
13185904481926371808963912 ~2018
13186106401126372212802312 ~2018
Home
4.828.532 digits
e-mail
25-06-01