Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
30829311221961658622443912 ~2021
30831010097961662020195912 ~2021
30831739703961663479407912 ~2021
30833522509161667045018312 ~2021
30834948577161669897154312 ~2021
3083559112512528...72258314 2024
30839710052361679420104712 ~2021
30840545161161681090322312 ~2021
3084407916492899...41500714 2024
30844502653161689005306312 ~2021
30848164646361696329292712 ~2021
30848263097961696526195912 ~2021
30849411943161698823886312 ~2021
30849483596361698967192712 ~2021
30855987032361711974064712 ~2021
30857058776361714117552712 ~2021
30862064927961724129855912 ~2021
30862988465961725976931912 ~2021
3086337358734135...60698314 2024
30864019855161728039710312 ~2021
30865403815161730807630312 ~2021
30868787909961737575819912 ~2021
30869243996361738487992712 ~2021
3087197822891278...86764715 2024
30872217833961744435667912 ~2021
Exponent Prime Factor Dig. Year
30874765501161749531002312 ~2021
30878779076361757558152712 ~2021
30879189131961758378263912 ~2021
30883119536361766239072712 ~2021
30883517219961767034439912 ~2021
30884044193961768088387912 ~2021
30885011107161770022214312 ~2021
30886012501161772025002312 ~2021
3088867310512248...20512915 2024
3089026577576116...23588714 2024
30891567572361783135144712 ~2021
30895254380361790508760712 ~2021
30895858856361791717712712 ~2021
3089795784612719...90456914 2024
30898856924361797713848712 ~2021
30900585992361801171984712 ~2021
30901361342361802722684712 ~2021
30907956620361815913240712 ~2021
30908468348361816936696712 ~2021
30910283258361820566516712 ~2021
30910471418361820942836712 ~2021
30915818843961831637687912 ~2021
30916221080361832442160712 ~2021
30917000972361834001944712 ~2021
30917480576361834961152712 ~2021
Exponent Prime Factor Dig. Year
30918087205161836174410312 ~2021
30918541855161837083710312 ~2021
30920563129161841126258312 ~2021
30921891461961843782923912 ~2021
30922112969961844225939912 ~2021
3092469234114515...81800714 2024
30926299513161852599026312 ~2021
30926601581961853203163912 ~2021
30934093445961868186891912 ~2021
30934653692361869307384712 ~2021
30934799557161869599114312 ~2021
30937270673961874541347912 ~2021
30938915570361877831140712 ~2021
30943081537161886163074312 ~2021
30948534614361897069228712 ~2021
30949024603161898049206312 ~2021
30949835666361899671332712 ~2021
30950513492361901026984712 ~2021
30950843587161901687174312 ~2021
30951100058361902200116712 ~2021
30951831647961903663295912 ~2021
30952135661961904271323912 ~2021
30957609299961915218599912 ~2021
30959846309961919692619912 ~2021
30961664444361923328888712 ~2021
Exponent Prime Factor Dig. Year
30963870265161927740530312 ~2021
30966753895161933507790312 ~2021
30967328129961934656259912 ~2021
30967548889161935097778312 ~2021
30969488725161938977450312 ~2021
3096960838991486...02715314 2024
30975371765961950743531912 ~2021
30977395118361954790236712 ~2021
30978496664361956993328712 ~2021
3098151075711542...57035915 2024
30981625051161963250102312 ~2021
3098494294677293...96531915 2024
30988345061961976690123912 ~2021
3098880808573656...54112714 2024
30992805305961985610611912 ~2021
30998083181961996166363912 ~2021
31000293398362000586796712 ~2021
31002271868362004543736712 ~2021
31002422269162004844538312 ~2021
31006264658362012529316712 ~2021
31011566528362023133056712 ~2021
31013024666362026049332712 ~2021
31017102101962034204203912 ~2021
31019484313162038968626312 ~2021
31019944585162039889170312 ~2021
Home
4.724.182 digits
e-mail
25-04-13