Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
19786798652339573597304712 ~2019
1978886514311064...46987915 2025
19791364463939582728927912 ~2019
19792383473939584766947912 ~2019
19793532425939587064851912 ~2019
19794562301939589124603912 ~2019
19795386175139590772350312 ~2019
19797149525939594299051912 ~2019
19799987779139599975558312 ~2019
19802386279139604772558312 ~2019
19803118904339606237808712 ~2019
19803920513939607841027912 ~2019
19805262830339610525660712 ~2019
19807079047139614158094312 ~2019
19807782653939615565307912 ~2019
19808914081139617828162312 ~2019
1980976493777448...16575314 2023
19810519303139621038606312 ~2019
19810527769139621055538312 ~2019
1981099859891010...85439115 2024
19811333978339622667956712 ~2019
19815493496339630986992712 ~2019
1981580036831081...01091915 2023
19816630693139633261386312 ~2019
19817545129139635090258312 ~2019
Exponent Prime Factor Dig. Year
19823069723939646139447912 ~2019
19824482009939648964019912 ~2019
19824997901939649995803912 ~2019
19825389991139650779982312 ~2019
19826694290339653388580712 ~2019
19827469561139654939122312 ~2019
19828557785939657115571912 ~2019
19828943629139657887258312 ~2019
19830174715139660349430312 ~2019
19830857585939661715171912 ~2019
19830921341939661842683912 ~2019
19832363330339664726660712 ~2019
19832598416339665196832712 ~2019
19833228731939666457463912 ~2019
19835604371939671208743912 ~2019
1983586568871467...60963914 2024
19836411023939672822047912 ~2019
19837496659139674993318312 ~2019
19838755285139677510570312 ~2019
19839319853939678639707912 ~2019
19839508351139679016702312 ~2019
19841044075139682088150312 ~2019
19842510500339685021000712 ~2019
19842964121939685928243912 ~2019
19843862497139687724994312 ~2019
Exponent Prime Factor Dig. Year
19844280553139688561106312 ~2019
19844433422339688866844712 ~2019
19845590033939691180067912 ~2019
19847837561939695675123912 ~2019
19848247201139696494402312 ~2019
1984977609412381...31292114 2024
19849855889939699711779912 ~2019
19851066535139702133070312 ~2019
19851165323939702330647912 ~2019
19851433829939702867659912 ~2019
19853744719139707489438312 ~2019
19853951585939707903171912 ~2019
1986026890032700...70440914 2024
19862455435139724910870312 ~2019
19862460878339724921756712 ~2019
19863091115939726182231912 ~2019
19864671122339729342244712 ~2019
19865160503939730321007912 ~2019
19866525355139733050710312 ~2019
19868148427139736296854312 ~2019
19868210311139736420622312 ~2019
19871483060339742966120712 ~2019
19872115133939744230267912 ~2019
19872304952339744609904712 ~2019
19873254157139746508314312 ~2019
Exponent Prime Factor Dig. Year
19875052166339750104332712 ~2019
19876449601139752899202312 ~2019
19880239469939760478939912 ~2019
1988424463394175...73119114 2023
19884267109139768534218312 ~2019
19884625103939769250207912 ~2019
1988640993113500...47873714 2024
19887802897139775605794312 ~2019
19890201308339780402616712 ~2019
19892154851939784309703912 ~2019
19892395825139784791650312 ~2019
19893336625139786673250312 ~2019
19893482891939786965783912 ~2019
1989543088274496...79490314 2023
19895938229939791876459912 ~2019
19896463298339792926596712 ~2019
1989711100073342...48117714 2024
1989840069531432...50061714 2024
19901992255139803984510312 ~2019
19902268889939804537779912 ~2019
19903765147139807530294312 ~2019
19904335021139808670042312 ~2019
19904682287939809364575912 ~2019
19904835175139809670350312 ~2019
19904841290339809682580712 ~2019
Home
4.828.532 digits
e-mail
25-06-01