Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
12374347903124748695806312 ~2018
12375205441124750410882312 ~2018
12375300985124750601970312 ~2018
1237669594391485...13268114 2024
12379143044324758286088712 ~2018
12380022473924760044947912 ~2018
12381030917374286185503912 ~2019
12381407237924762814475912 ~2018
1238261953032600...01363114 2024
12385028191124770056382312 ~2018
12385301081924770602163912 ~2018
12385305983924770611967912 ~2018
12385613449774313680698312 ~2019
1238596908797035...41927314 2025
12386794693374320768159912 ~2019
12387236823774323420942312 ~2019
1238878354311883...98551314 2024
12388832552324777665104712 ~2018
12389002502324778005004712 ~2018
12389230133924778460267912 ~2018
12390142799924780285599912 ~2018
12390323677124780647354312 ~2018
12390553810174343322860712 ~2019
12390570173924781140347912 ~2018
12390753638324781507276712 ~2018
Exponent Prime Factor Dig. Year
12391303073924782606147912 ~2018
12392673212324785346424712 ~2018
12393425798324786851596712 ~2018
12393778832324787557664712 ~2018
12394038722324788077444712 ~2018
12394055149124788110298312 ~2018
12394604279924789208559912 ~2018
12394949522324789899044712 ~2018
12395252955774371517734312 ~2019
12395838193124791676386312 ~2018
12396246960174377481760712 ~2019
12396353029124792706058312 ~2018
12396555602324793111204712 ~2018
12396728102324793456204712 ~2018
12396747770324793495540712 ~2018
12399600176324799200352712 ~2018
12399988343924799976687912 ~2018
12400036028324800072056712 ~2018
12401181608324802363216712 ~2018
12401411837924802823675912 ~2018
1240165677712108...52107114 2024
12402615305924805230611912 ~2018
12403087375124806174750312 ~2018
12403205396324806410792712 ~2018
12404180171374425081027912 ~2019
Exponent Prime Factor Dig. Year
1240571724712704...59867914 2024
12406111451924812222903912 ~2018
12406407134324812814268712 ~2018
12407601835124815203670312 ~2018
12409045219124818090438312 ~2018
12409089671924818179343912 ~2018
12410170832324820341664712 ~2018
1241104977473202...41872714 2024
1241270627991462...97722315 2024
1241279816932609...51868715 2023
12413949572324827899144712 ~2018
12414269593124828539186312 ~2018
12414573293924829146587912 ~2018
12415116617924830233235912 ~2018
12415325593124830651186312 ~2018
12415862731774495176390312 ~2019
12415939291124831878582312 ~2018
12416040086324832080172712 ~2018
12417307204174503843224712 ~2019
12417987101924835974203912 ~2018
12418209817124836419634312 ~2018
12418322035124836644070312 ~2018
12420002933924840005867912 ~2018
12420281205774521687234312 ~2019
12420388723124840777446312 ~2018
Exponent Prime Factor Dig. Year
12421584617924843169235912 ~2018
12422562092324845124184712 ~2018
12423887189374543323135912 ~2019
12424890062324849780124712 ~2018
12425802505124851605010312 ~2018
12425983513124851967026312 ~2018
12426346508324852693016712 ~2018
12428013017924856026035912 ~2018
12429543181124859086362312 ~2018
12430378087124860756174312 ~2018
12432070256324864140512712 ~2018
12435267271124870534542312 ~2018
12435464537924870929075912 ~2018
12435541802324871083604712 ~2018
12435889285124871778570312 ~2018
12437075489924874150979912 ~2018
12439578761924879157523912 ~2018
12441480437924882960875912 ~2018
12442319186324884638372712 ~2018
12442357603774654145622312 ~2019
12443498989124886997978312 ~2018
12444434413124888868826312 ~2018
12445240832324890481664712 ~2018
12445373275124890746550312 ~2018
12447038629124894077258312 ~2018
Home
4.933.056 digits
e-mail
25-07-20