Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
40322230507180644461014312 ~2022
4032833782913653...73164715 2025
40331482945180662965890312 ~2022
40332677639980665355279912 ~2022
40334827670380669655340712 ~2022
4033520391593388...89356115 2025
40335940130380671880260712 ~2022
40341738392380683476784712 ~2022
40343805218380687610436712 ~2022
40354103509180708207018312 ~2022
40354230821980708461643912 ~2022
40365596954380731193908712 ~2022
40366943335180733886670312 ~2022
40366996412380733992824712 ~2022
40369557085180739114170312 ~2022
40369599421180739198842312 ~2022
4037300287871816...95415115 2025
40375826779180751653558312 ~2022
40376380676380752761352712 ~2022
40378224629980756449259912 ~2022
40384476998380768953996712 ~2022
40390860377980781720755912 ~2022
40395223682380790447364712 ~2022
4039538193891187...90036715 2025
40396363169980792726339912 ~2022
Exponent Prime Factor Dig. Year
40400969228380801938456712 ~2022
40417248101980834496203912 ~2022
40425351101980850702203912 ~2022
40430127961180860255922312 ~2022
40431194966380862389932712 ~2022
40432254560380864509120712 ~2022
40434487292380868974584712 ~2022
40437706514380875413028712 ~2022
40438034813980876069627912 ~2022
40441827410380883654820712 ~2022
4044766636011003...57304915 2025
40447793275180895586550312 ~2022
40448022097180896044194312 ~2022
40448649185980897298371912 ~2022
40449477800380898955600712 ~2022
40453471838380906943676712 ~2022
40455440821180910881642312 ~2022
40456447241980912894483912 ~2022
40464988832380929977664712 ~2022
40465694701180931389402312 ~2022
40465911023980931822047912 ~2022
40466951933980933903867912 ~2022
40467864719980935729439912 ~2022
40468236581980936473163912 ~2022
40469913163180939826326312 ~2022
Exponent Prime Factor Dig. Year
40472460428380944920856712 ~2022
40474751753980949503507912 ~2022
40479149888380958299776712 ~2022
40481267869180962535738312 ~2022
40484788802380969577604712 ~2022
4048491513532850...55251315 2025
40490619013180981238026312 ~2022
40493026643980986053287912 ~2022
40495406119180990812238312 ~2022
40497215369980994430739912 ~2022
40499053694380998107388712 ~2022
40499061473980998122947912 ~2022
40500609431981001218863912 ~2022
40501836986381003673972712 ~2022
40513920674381027841348712 ~2022
40514109823181028219646312 ~2022
40516132979981032265959912 ~2022
40523497033181046994066312 ~2022
40523569001981047138003912 ~2022
40524816595181049633190312 ~2022
40527129392381054258784712 ~2022
40527247633181054495266312 ~2022
40528997149181057994298312 ~2022
40554147044381108294088712 ~2022
40556319649181112639298312 ~2022
Exponent Prime Factor Dig. Year
40563702047981127404095912 ~2022
40565188103981130376207912 ~2022
40566260623181132521246312 ~2022
40573643705981147287411912 ~2022
40577152217981154304435912 ~2022
40583189600381166379200712 ~2022
40585887869981171775739912 ~2022
40586015891981172031783912 ~2022
40591236344381182472688712 ~2022
40591700474381183400948712 ~2022
40593458305181186916610312 ~2022
40600114099181200228198312 ~2022
40611077936381222155872712 ~2022
40611441829181222883658312 ~2022
40619461273181238922546312 ~2022
40626244496381252488992712 ~2022
40632502625981265005251912 ~2022
40634541805181269083610312 ~2022
40636967192381273934384712 ~2022
40636998133181273996266312 ~2022
40639284494381278568988712 ~2022
40641712297181283424594312 ~2022
40643301889181286603778312 ~2022
40651114979981302229959912 ~2022
40652712899981305425799912 ~2022
Home
4.873.271 digits
e-mail
25-06-22